Advice to the Danish Parliament: New framework conditions, energy taxes linked to CO2 emissions, and sector coupling

Yesterday Henrik Madsen and other researchers from DTU visited Folketinget to give an important message:

  • Denmark need to have new framework conditions as soon as possible.
  • Energy taxes should be harmonized and linked to CO2 emissions from the electricity we use per hour. This can be done now.
  • In addition, dynamic network tariffs must be introduced, which are linked to the physical challenges in the network.
  • Such framework conditions, digitalisation and sector coupling will contribute to both green growths and to reaching the target of 70 per cent CO2 reduction in 2030.

See the video from the meeting in Folketingets Klima-, energi- og forsyningsudvalg. Jump to time code: 11:25:30

See Henrik Madsen’s presentation (PDF) in the Danish parliament on September 21, 2020

Learn more in the DTU report from June 2020: Sector Development Project about Smart Energy Systems (English summary of report)

GREEN DIGITALIZATION 2020 – CITIES FINAL CONFERENCE and joint conference with DyCiPs and FED

The invitation is on its way. Save the dates!

Due to the COVID-19 situation:

Monday the 9th of November is CITIES final conference at DTU, Lyngby. The conference will be physical with streaming functionality in Zoom, so the IAB members and others can join online.

Tuesday the 10th of November will be an International Day – a partner conference with CITIES, the DiCyPs project (AAU), and the FED.  All three projects will be represented. The day has been changed from DTU to EWII, Kokbjerg 30, 6000 Kolding, Denmark. The meeting will be physical with streaming functionality in Zoom.

We reserve the right to act upon COVID-19 participation restrictions.

If you want to show up physical at DTU or EWII and need to book tickets and/or hotel please note that the meeting could be changed to a virtual meeting at short notice. We recommend that attendees from abroad stay home and join us virtually.

DTU and SDU move together with Center Denmark in Denmark’s Energy Silicon Valley

Center Denmark, which is a national meeting point for green research, has moved to new premises and has new cohabitants. Not long ago, the center’s employees moved together with the cluster organization Energy Cluster Denmark, and now both SDU and DTU join the green research community, which is physically located in Port House in Fredericia.

Learn more in the press release (Danish):

Opinion: Remember to give the tariffs a makeover #green-tax-reform

When the Danish politicians this fall negotiate green tax reform, they should look at #tariffs. Nothing is stronger than a well-designed price signal when you want to promote flexible energy consumption, writes Henrik Madsen in this opinion in Teknologiens Mediehus GridTech.

Today, tariffs make up a large part of the Danish consumers’ electricity bills. The pure electricity price is approx. 15%, tariffs approx. 20% and the rest are energy taxes. If politicians want consumers to change electricity consumption, it is also necessary to look at tariffs when negotiating green tax reform so that they set up a sensible incentive structure that encourages people to change behaviour.

Denmark should have a system where the price is high when there are capacity problems, large grid losses and so on. And low when there are no problems in the network.

See the Danish text here

#dkpol #dkenergi #dkgreen #smartenergy #data

CITIES’ related projects

Although CITIES ends by the end of 2020 after seven years of research, CITIES’ research, findings and thoughts continue through other projects based on research in CITIES or inspired by CITIES. This applies the following projects.

Center Denmark – digital hub for smart energy systems

CITIES’ work with cloud platforms has been a kind of preparatory work for the establishment of Center Denmark in 2018, a new digital hub for smart energy systems.

Center Denmark will develop the best-in-class nationwide data platform for energy related data, that combined with forefront artificial intelligence identifies flexibilities on the demand side across the energy systems. Development of decision tools with real-time capabilities will enable their partners to develop and test new innovative business models and commercial services targeting smart grid features for industrial sector and private households.

The hub will – as an incubator environment – connect several Danish living labs in a data lake for scaling and establish new scalable micro-grid test and demonstration facilities.

The data lake contains a variety of energy-related data that are mainly collected from the living labs in the project, but also from other sources such as BBR (The Danish Buildings and Homes Register) and DMI (Danish Meteorological Institute).

Center Denmark will make the data platform a foundation for an international framework for research, representative and scalable tests and demonstrations as well as education.

Center Denmark has a close connection to all four technical universities in Denmark and a number of key players for a smart green transition.

Center Denmark is located in Kolding in the immediate vicinity of key national players in the energy field, such as Energinet, Ørsted, EWII, TREFOR and Dansk Fjernvarme. This location will help to ensure that Center Denmark becomes the hub of the new Energy Silicon Valley in the Triangle area between Vejle, Fredericia and Kolding. Center Denmark has 42 partners. The center is funded by Innovation Fund Denmark.

In 2020 The European Commission has decided to certify Center Denmark as a “Digital Innovation Hub”.

EU defines Digital Innovation Hubs as one-stop-shops that help companies to become more competitive with regard to their business/production processes, products or services using digital technologies.


FED – Flexible Energy Denmark

FED is a Danish digitization project aimed at turning Danish power consumption flexible to enable utilization of excess power from wind turbines and solar cells. FED attempts to balance energy consumption with the production of sustainable green energy.

By balancing the energy system FED provides cost savings through decreased need for new energy investments. By balancing FED provides a reduction of CO2 emissions due to full utilization of the sustainable green energy available.

FED utilizes the latest digital technologies for reducing climate impact.

The project brings together Denmark’s foremost researchers, organizations, supply companies, software companies and a number of living labs that provide data for the project. The data is sent to the digital hub for smart energy systems Center Denmark’s data lake.

A living lab is a geographical area that is experiencing a challenge that the FED project might investigate. FED’s living labs gather data on building structures, constructional systems (CTS and others) and operational systems. Living labs send data from various sensors and monitoring systems into the data lake at Center Denmark. Some living labs have been equipped with extra sensor systems and actuators for control. All energy data will be made anonymous to the companies so they cannot identify who have provided the data.

FED has 24 partners. The project is funded by Innovation Fund Denmark. is a gathering point for living labs and test labs working with sustainable technologies. is built upon Center Denmark, a national hub for the digitization of the Danish energy systems and closely related to FED, Flexible Energy Denmark, a Danish digitization project with several living labs.

Climate change calls for a strong, joint action from research, industries and from the citizens. wants to bring together all living labs and test labs in Denmark in order to enhance their cooperation among each other and with Danish industry. can help universities in Denmark find a suitable lab where they can develop their next sustainable solutions related to their particular research field. can also help the Danish companies find the right partners for the development, test and demonstration of their next-generation products.

The ambition to develop scalable solutions requires tests in representative settings. Living Labs are real-life test environments where new technologies, products and services can be tested in representative contexts, as in normal residential areas and industrial areas etc. provides access to a wide range of test labs and Living Labs in Denmark. interacts with the international UNILAB consortium, international partners, and with strategic international platforms and communities, e.g. with initiatives from the International Energy Agency, IEA.


HEATman / HEAT 4.0 – Digitally supported Smart District Heating

The objective of HEAT 4.0 is to develop an integrated flexible product platform, called HEATman, that enables District Heating (DH) companies to meet demands from customers and society in a cost-efficient way – these aim to improve environmental gains and increase the share of renewable energy sources, all of which are supported by an intelligent digitalization of the DH sector, and consequently enable the wide deployment in domestic market and the export to international market.

HEAT 4.0 transfers the state-of-the-art knowledge from the Strategic Research Centres 4DH, promoting low energy concepts, and CITIES, promoting smart cities and smart energy grid concepts. The existing results from them and other related projects are made into the products and enriched by additional applied research in DTU and AU. The aim hereof is to digitizing the DH sector through data intelligence, artificial intelligence and other cutting-edge technologies.

HEAT 4.0 combines a wide range of existing technical partner-solutions into a comprehensive and adaptable product platform – a cloud solution. HEATman is an integration platform that allows DH companies to adjust products from different providers to their own need. A major achievement is the ability to oversee the entire system and value chain.

Heat 4.0 is funded by Innovation Fund Denmark.

SCA – Smart Cities Accelerator

The Danish / Swedish EU-supported project Smart Cities Accelerator ended February 28, 2020. Smart Cities Accelerator was based on CITIES research and findings and has tested the methodologies for energy efficiency improvements and energy renovations, digitization potential in the district heating network, energy communities, and legislation etc. The project used Open Innovation Calls as a tool to get in contact with small startups with great ideas and solutions for complicated energy problems like power peak shavings.

In the period 2016-2020 four universities (DTU, Copenhagen University, Lund University, Malmö University), five municipalities (Copenhagen, Høje-Taastrup, Malmö, Lund, and Båstad) together with three energy companies (Høje Taastrup Fjernvarme & Kraftringen and E.ON both Sweden) have worked cross-disciplinarily.

SCA was funded by Interreg Öresund-Kattegat-Skagerrak

IDASC – Intelligent data use in district heating in smart cities

The IDASC project aims to collect and disseminate experiences about opportunities surrounding the self-learning systems in district heating. As part of the project, IDASC will test different models for using more real-time data in district heating, meaning senior executives, decision-makers and politicians involved in district heating can be given the best possible conditions for assessing its potential. This includes technical advantages and economic savings, as well as its CO2 reduction potential.

The self-learning district heating system can optimize temperature and flow control, enable peak load reduction, improve link between sustainable energy sources and district heating supply, create significant reduction in costs and CO2 emissions, and reduce maintenance costs, as the system is continuously and automatically adjusted.


syn.ikia aims at achieving sustainable plus energy neighbourhoods with more than 100% energy savings, 90% renewable energy generation triggered, 100% GHG emission reduction, and 10% life cycle costs reduction, compared to nZEB levels. This will be achieved while ensuring high quality indoor environment and well-being.

Four real-life plus-energy demonstration cases tailored to the four different climatic zones and development projects of Europe will be developed and analysed within the syn.ikia project. The syn.ikia demo cases will demonstrate the functionality of the plus-energy neighbourhood concept for the rest of Europe.


The aim of the project is to increase the flexibility of energy networks, to test new business models and to support important stakeholders with tailor-made end-user interfaces. It will test a variety of solutions at four real demonstration sites located in Spain, Italy, France and Denmark. Additional laboratory testing will address safety issues.

Another special feature of ebalanceplus is its social and market orientation.

From the outset, the project will take into account people’s needs and concerns in terms of innovation and smart grids. This increases the chances of the market adopting technology.

The project work plan covers a 4-year period and involves 15 partners from 10 countries. All project activities and results are divided into 9 work packages, dealing with research, analysis, evaluation and exploitation to achieve future replicability.


TOP-UP studies how TOP-down initiated heat networks can play a central role in integrated regional energy systems, and investigates how these top-down actions can empower bottom-UP participation among local actors and sectors, as to achieve the regions ambitious energy targets.

TOP-UP incorporates expertise in modelling, automation, social sciences and practice to optimize regional energy systems. It focuses on the integration of heat and electricity networks, and identifies and fosters optimal levels of local actor/sector participation. TOP-UP aims to satisfy actors/sectors needs and preferences, and to optimize regional energy system performance.

TOP-UP develops tailored solutions for the Groningen (NL) and Copenhagen (DK) energy systems – which prioritize changes to their heat networks due to unique regional challenges – and studies how these solutions can be scaled and customized to other regions, making best use of local renewables and reducing the dependency on fossil fuels.


FLEXCoop aims at introducing a complete automated Demand Response framework and tool suite for residential electricity consumers.

The end-to-end interoperable solution will enable consumer flexibility to be valorised in front of a range of possible users in order to fulfil different services to the grid.

This framework will enable energy cooperatives to explore demand response business models and take the role of aggregators. The pilot participants are members of two energy cooperatives located in the Netherlands and in Spain.

FLEXCoop supports the democratisation of the energy system by enabling electricity consumers in households to actively support the energy transition and benefit from it through demand response.

CITIES Summer School 2020 is running – with about 70 participants!

CITIES Summer School 2020 is running – with about 70 participants!

Due to the COVID-19 situation, some of the students are at DTU – others online – we stream the lectures and provide online interaction for all participants and assistance during exercises.

The summer school – Time Series Analysis – with a focus on modelling and forecasting in energy systems – is a collaboration with Norges teknisk-naturvitenskapelige universitet (NTNU)– ZEN Research Centre, DTU – Technical University of Denmark (CITIES Innovation Center) and International Energy Agency (IEA) EBC Annexes 71 and 82. With Henrik MadsenPeder Bacher, and others.

#smartenergy #energysystem #summerschool #data #bigdata #timeseriesanalysis #forecasting

Learn more about the summer school

VIDEO and PDF: Data-Driven Technologies for Energy Efficiency and Flexibility

VIDEO and PDF: Data-Driven Technologies for Energy Efficiency and Flexibility

Watch or rewatch CITIES webinar – August 12, 2020.

CITIES are pleased to announce that our partner – Innovationsnetværket Smart Energy – has made a great video from our webinar about digital and data-driven methods to optimize the operation of buildings and district energy systems.

Watch or rewatch CITIES webinar from August 12, 2020, where our speakers gave an overview of potentials and state-of-the-art technologies in the field.

We also share some of the presentations as PDF. See them below.

JOIN CITIES AGAIN! On 9-11. November 2020 CITIES hold our final conference.  Please reserve the dates. Stay tuned and sign up, when we are ready with the program in a couple of weeks. It would be possible to follow our conference live on the internet.

Please share with your network.


Anders Skjøtt, Advisor, Danish Energy Agency: Initiatives from the Danish Energy Agency: Buildinghub and preliminary findings from subsidised projects on Digitalisation

Henrik Madsen, Professor, DTU Compute: Data-driven methods – General introduction and some specific examples

Henrik Aalborg Nielsen, Director of Analysis and Modelling, ENFOR A/S: Data-driven methodologies for large-scale implementation and roll-out

Christoffer Rasmussen, PhD Fellow, DTU Compute: REBUS Connect°, and data-driven technologies from IEA EBC Annex 71 and on PhD project

Karen Byskov Lindberg, Senior Research Scientist, SINTEF: FLEXBUILD project – Impact of optimal utilisation of building’s energy flexibility on a regional level

VIDEO: Webinar Data-Driven Technologies for Energy Efficiency and Flexibility

Digital Hub Denmark: The Danish government’s new plan to introduce a CO2 tax could turn seven years of research into reality

Henrik Madsen has been interviewed by Digital Hub Denmark about the research in CITIES Innovation Center, FED, Smart Cities Accelerator and other CITIES related projects, working with energy optimization, flexibility etc. as ways to green transition.

Digital Hub Denmark writes, that researchers at DTU Compute are investigating ways of managing the energy systems of the future based on green, fluctuating sources of energy. The Danish government’s new plan to introduce a CO2 tax could turn seven years of research into reality.

“We’ve been used to regulating the demand for energy at the power plants, but we can’t do that with green energy sources that fluctuate with the weather. So, the entire energy system needs to be turned upside down. In future, the flexibility needs to be in the energy system itself and at the consumer end,” Henrik Madsen says.

Read the article here:

VIDEO Using SDEs to understand energy efficiency in buildings

VIDEO Using SDEs to understand energy efficiency in buildings

Jaume Palmer Real is a PhD student at DTU COMPUTE – Department of Applied Mathematics and Computer Science – at the Technical University of Denmark.

In his YouTube-video, he tells about his PhD project: Stochastic Differential Equations (SDE) for Modeling Energy Systems Integration – and about how to use SDEs to understand energy efficiency in buildings.

Please share with your network!

CITIES invites to webinar: Data-Driven Technologies for Energy Efficiency and Flexibility

CITIES invites to webinar: Data-Driven Technologies for Energy Efficiency and Flexibility

Workshop / Webinar August 12, 2020, 9:00 AM – 12:00 PM CEST

In the quest for fossil-free cities and a fossil-free building sector, there is continued need to maximise energy efficiency of buildings and energy systems in cities. Even the limited energy use should to a maximum possible extent come from renewable sources, and the classical challenge of balancing demand and supply becomes an issue, which calls for flexible operation of all units.

Contemporary digital and data-driven methods are key to optimize the operation of buildings and district energy systems such that use of fossil fuels can be minimized without compromising on comfort and functionality of the built environment. The workshop will give an overview of potentials and state-of-the-art technologies in the field.

Sign up here for free!

Download the program as a PDF