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Contents

¢ Asingle sensor (smairt
meter) (UA, ..)

¢ Several sensors (dyn.)

¢ Occupancy behavior
modeling

¢ Modeling and operation
of DH systems

¢ Price-based control in
smart grids

In all cases location/MET data
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Part 1
Simple non-parametric methods

s

Typically only data from smart meter
(and a nearby existing MET station)
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Case Study No. 1

Split of total readings into space heating and domestic
hot water using data from smart meters
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Data

* 10 min averages from a number of houses

House 1 House 2
Year build 1963 Year build
House size 119 m? House size
Occupants 2 Occupants
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House 3

Year build 1963
House size 140 m?2
Occupants 2

House 4

Year build 1967
House size 137 m?
Occupants 5
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Splitting of total meter readings

House Characteristic
e.g.size,insulating power, solar absorption

Heating Consumption

Occupants Characteristic

Raw Data e.g.open/close windows, turn up/down the heating,
night-time drop
Hot Water Consumption
e.g.shower, dishwashing
0
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Holiday period

M=

B House: 2, Occupants: 2

Consumption [MJ/h]
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Robust Polynomial Kernel

To improve the kernel method

Rewrite the kernel smoother to a Least Square Problem
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Make the method polynomial by replacing #  with
Rq — H[} + Hl(Xf — ."]’.T) -+ Hg(Xr — ;'}_T)E
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Robust Polynomial Kernel
Raw Data
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Case Study No. 2

Modelling of Thermal Performance
using
Smart Meter Data
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Energy consumption in DK =

kWh / m2
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U=0.86 W/m2K

U=0.21 W/m2K

M=

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)
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Examples (2)

Whole House Heat Loss - Measured versus Predicted for
New Build UK Dwellings (n=18)
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Measured versus predicted energy consumption for different dwellings
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Characterization using Data from
Smart Meters

e Energy labelling
e Estimation of UA and gA values
¢ Estimation of energy signature

e Estimation of dynamic characteristics
e Estimation of time constants
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Energy Labelling of Buildings =

e Today building experts make judgements of the energy
performance of buildings based on drawings and prior
knowledge.

® This leads to 'Energy labelling' of the building

® However, it Is noticed that two independent experts can predict
very different consumptions for the same house.

S
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Simple estimation of UA-values

@ Consider the following model (t=day No.)
estimated by kernel-smoothing:

Qe = Qo(t)+ col(t)(Tit— Tor)+cr(t)(Tit—1— Tar—1) (1)

2 The estimated UA-value Is

Fal

UA(t) = () + &(t) 2)

a2 With more involved (but similar models) also gA
and wA values can be stimated

|
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Estimated UA-values
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Results =
UA oz A wAR® wAr® wh: T or

W/°C W W/°C W/°C W/°C °C
4218596 211.8 10.4 597.0 11.0 5.4 89 236 11
4381449  228.2 126 1012.3 29.8 42.8 39.7 194 1.0
4711160  165.4 6.3 518.8 14.5 4.4 91 225 09
4836681 155.3 8.1 591.0 39.5 28.0 214 235 14
4836722 236.0 17.7 1578.3 4.3 3-3 189 235 16
4986050 159.6 10.7 715.7 10.2 1.5 .2 208 14
5009876 1448 10.4 87.6 3.7 1.6 173 218 1.5
5009913  207.8 9.0 962.5 3.7 8.6 1006 226 0.9
5107720 189.4 154 657.7 41.4 29.4 166 210 16
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Based on measurements from the heating season 2009/2010 your typical indoor temperature DTU

during the heating season has been estimated to 24 °C'. If this is not correct vou can change it

here |24 | °C.

If vour house has been left empty in longer periods with a partly reduced heat supply you have
the possibility of specifving the periods in this | calendar |.

According to BBR the area of your house is 155 m? and from 1971.

Based on BBR information it is assumed that you do not use any supplementary heat
supply. If this is not correct you can specify the type and frequency of use here:

e Wood burning stove used @ times per week in cold periods.

e Solar heating

Based on the indoor temperature 24 °C', the use of a wood burning stove 0 times per week, and
no solar heating installed, the response of your house to climate is estimated as:

e The response to outdoor temperature is estimated to 200 W/°C' which given the size

y/n

, approximate size of solar panel @ i

and age of your house is expectable@.

e On a windy day the above value is estimated to increase with 60 W/°C' when the wind
This response to wind is relatively high and
indicates a problem related to the air sealing on the eastern side of the house.

blows from easterly directions.

e On a sunny day during the heating season the house is estimated to receive 800 W as an
average over 24 hours. This value is quite expectable.

“Many kind of different recommendations can be given here.

0

i

meters.

— venue 1 11 nenyen cnergy Systems



Perspectives for using
data from Smart Meters

¢ Reliable Energy Signature.
¢ Energy Labelling

e Time Constants (eg for night set-
back)

e Proposals for Energy Savings:

@ Replace the windows?
@ Put more insulation on the roof?

@ |s the house too untight?

¢ Optimized Control

@ Integration of Solar and Wind
Power using DSM
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Case study No. 3

Modelling the thermal
characteristics of a
small office building

nl
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Parametric Models

JRC Workshop - Location Data, JRC, September 2016

¢ A model for the thermal
characteristics of a small
office building
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Flexhouse at SYSLAB (DTU Risg@)
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A first order model often used for simulation




Model evaluation of the first order model
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@ Model is not adequate since residuals are not white noise



Model found using Grey-box modelling

using CTSM-R -

(.....

http://Ismart-cities-centre.org/software-solutions/)

Ambient

Sensor




Model evaluation — Extended model
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@ This model is OK, since residuals are uncorrelated (white noise)



Case study No. 4

Models for DH Systems

!
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Heat Load forecasts — up to 96 h ahead =

E 2010-01-18 10:00
= I
= I
- () |
[0 I
C —_ |
o |
O o |
o 9O
& I
- 1
3—&“ |
(5} |
5B 7 : — Prognose
= | —— Realiseret
— O L
49]
3 I I I I I
0 24 48 72 96
Horisont [timer]
JRC Workshop - Location Data, JRC, September 2016 / gtlrl!lgngigent ey Sustame



gy
>
] - Simplification -
v(t) oc V()
O—
V(o)
T.(¢) Ta(0)
tH7(t)
Length of pipe = / v(s)ds
t
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Conditional parametric ARX-model

Yt — Z 3J(Xr—m)tyr—j T Z bj(Xr—m)Ur—j + €.

i€l i€eLy

@ The functions a;(x;_,,) and b;(x,—,) must be
estimated

@ The model may be written as y; = 2/ 0(x,) + e,

i
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Impulse Response of ARX-model (40%)

| sponse (°C)
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Characteristics
30%, 40%, 50%

Stationary Stationary
gain of FIR gain of ARX
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Models and Controllers
(Highly simplified! - In fact 680 km pipes ...)
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Prob. constraints
Controller set-points

i

Temp at User
A

Ambient Air Temp.
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Observed User Temp.
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Supply temperature with/without -
predictive control

i

—e— For PRESS
—¢— Med PRESS

Fremlgbstemperatur [ °C |
76 78 80 82 84 86 88

100 200 300 400

Graddage pr. maned

Nl
JRC Workshop - Location Data, JRC, September 2016 / CITI ES

Centre for IT Intelligent Energy Systems



Savings

o
. A 4
(Reduction of heat loss = 18.3 pct) <=
Varmekab Elkab
GJ  1000kr kKWh  1000kr

For PRESS | 653,000 30,750 | 499,000 643
Med PRESS | 615,000 28,990 | 648,000 842
Forskel 37,400 1,760 | -149,000 -194

Total besparelse (9 forste maneder af normalar): 1,566,000kr

Besparelse for et normalar:
® 12/9 x 1,566,000kr = 2.1 mill.

» Imidlertid star jan.—sept. (75% af aret) kun for ca. 65% af
graddagen i er normalar.

» 1,566,000kr/0.65 = 2.4 mill.

/ CITIES
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Case study No. 5

Models for Occupance Behavior

!
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Markov Chain Models

M=

2.1.1.2. Two-state Markov chains with covariates. Covariates in
Markov chains with only the two states, 0 and 1, can be modeled as

logit (P (Xp1 =0 |xn =0)) =Z1b1. 6121, <RP (4a)
logit (P (Xpsq =1 |xn =1)) =Zy4bh. 6Zy <RI (4b)
where the logistic function denoted logit is defined as

logit :]0. 1[— R, logit(x) = log (-1 fx) (5)

__"‘A-ﬂ—l—"‘ An

b

Ansi---

R \ T \ P

- Xp 13— Xjy ——Xpy1---

Fig. 3. A Markov chain with exponential smoothing as covariate in the transition
probabilities.

.
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Model simulations
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=
—]
—

Electricity consumption
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e
(Collaboration with CIMNE and JRC) *
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Electricity consumption
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Electricity consumption DTU
(Data from CIMNE / Barcelona) &=
(Hidden Markov Model)
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Case study No. 6

Control of Power Consumption
(DSM) using
the Thermal Mass of Buildings
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Control of Power Consumption

JRC Workshop - Location Data, JRC, September 2016
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The Danish Wind Power Case

. balancing of the power system

M=

25 % wind energy (West Denmark January 2008)| 20 % wind energy
4500 4500
4000 4000 i | FL
3500 o4 ok i 2 : 3500 e h ][ i
o AT N 79_ V L T ,
mHHH‘lfﬂHHlMHHLM 2500 1] !1 LA WJI\_
s Uﬁ\ RARIEE %J | \UI" ] JU’T \Uf \ i U/\b | AL
1500 - 1500 +—— - E
1000 +—— - 1000 : :
500 1 { 500 -
0 0
[ Wind power O Demand = Wind power 0 Demand
In 2015 approx. 42 pct of electricity load was
In 2008 wind power did cover the entire covered by wind power.
demand of e({:/c;t;itcgﬁ;n 200 hours For several days the wind power production was more

than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power load was
covered by wind power
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Energy Systems Integration DTU
o

°in Smart Cities
el
ity

Energy system integration (ESI) = the process of optimizing energy
systems across multiple pathways and scales

Single Building

Community, City (e N

Region, Country

Data Pathway: Information and
communication technologies allow a
better understanding and control of
systems by linking sensor data from
multiple locations to control centers.

F
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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
implement and test of solutions (layers: data, models, optimization, control,
communication) for operating flexible electrical energy systems at all
scales.

bnend

Geographical Scale

Complexity
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Control and Optimization

£

Day Ahead Market

DIRECT CONTROL (DC)
Individual consumption
schedules

A T &
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Aggregated loads

INDIRECT CONTROL (IC)
Price signals

5 g
Sub Aggregator B
Forecast services

eal time price

Advanced Advanced Advanced

controller controller controller
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Control and Optimization

Day Ahead Balancing
Market @ Market

B i'

=

Aggregator Indirect Control

aggregated loads

Direct Control ;
DC
(DC) ' =

(k)
Sub Agaregator
- Fed iecadt Baniien

(a)
Sub Aggregator

- Fattidi Balvick
- Opt. and eaflisls bt

MET Forecasts
Local Data

SOpd. and ol 8 2 vitid
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—State Info |

S5 = il

In New Wiley Book: Control of Electric Loads
in Future Electric Energy Systems, 2015

Q.\\ﬁ
= '
S -
Advanced | = = = JAdvanced _ | Advanced| | _ _ _y
Controller Controller Controller
(=)
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Day Ahead:

Stoch. Programming based on eg. Scenarios

Cost: Related to the market (one or two levels)

Direct Control:

Actuator: Power

Two-way communication

Models for DERs are needed

Constraints for the DERs (calls for state est.)

Contracts are complicated

Indirect Control:

Actuator: Price

Cost: E-MPC at low (DER) level, One-way
communication

Models for DERs are not needed

Simple 'contracts'

1 CITIES
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Direct vs Indirect Control

M=

Level Direct Control (DC) Indirect Control (IC)

. N 7 3 N
11 MM ) op g 21 Pi(Ziks Bik) min; , > ;o @(Zk, Pr)
.t Zi1 = flpr)

wllul T 'l'uJ TTI T T-":J N
AY min, Y ;o &i(pr,ur) V7€ J
S.L Tik+1 = fjl:.,t.'jﬁ}'u_j.;;,] “i"'fj e J 8.L Trii— fj(_-“ﬁ-u 'U;,J

Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct
control the optimization is globally solved at level III. Consequently the optimal control signals
u; are sent to all the J] DER units at level IV. (IC) In indirect control the optimization at level
[11 computes the optimal prices p which are sent to the J-units at level IV. Hence the ] DERs

optimize their own energy consumption taking into account p as the actual price of energy.

1!
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Models

M=

Grey-box modelling are used to establish models and methods
for real-time operation of future electric energy systems
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SE-OS Characteristics

e Bidding — clearing — activation at higher levels

e Control principles at lower levels

¢ Cloud based solution for forecasting and control
e Facilitates energy systems integration (power, gas, thermal, ...)
e Allow for new players (specialized aggregators)
e Simple setup for the communication

@ Simple (or no) contracts

¢ Rather simple to implement

e Harvest flexibility at all levels in Smart Cities

nl
JRC Workshop - Location Data, JRC, September 2016 / CITI ES
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Virtual Storage solutions
in Smart Cities

M=
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© Flexibility (or virtual storage) characteristics:

JRC Workshop - Location Data, JRC, September 2016

Supermarket refrigeration can provide storage 0.5-2 hours ahead

Buildings thermal capacity can provide storage up to, say, 5-10 hours ahead
Buildings with local water storage can provide storage up to, say, 2-12 hours ahead
District heating/cooling systems can provide storage up to 1-3 days ahead

Gas systems can provide seasonal storage

b CITIES

Centre for IT Intelligent Energy Systems



SE-OS
Control loop design - logical drawing

Termostat

actuator




— N M T 0 © N~ ©

Lab testing



SN-10 Smart House Prototype




Tools for Forecasting: g °
o]
(Prob. forecasts) 3 8
g3
© Power load - o
o
© Heat load .
I T T T T I I
© Gas load 0 24 48 72 96 120 144 hours
© Prices (power, etc)
M00% [90% [H80% [070% [160% [150% [140% [130% [120% [110%
@ Wind power prod. _ g
@ Solar power prod. § 8
© State variables (DER) § 8
.

0 24 48 120 144 hours
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Case study

Control of Power Consumption
(DSM) using
the Thermal Mass of Buildings

Wb CITIES

JRC Workshop - Location Data, JRC, Septembeér 2UTe

i
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Data from BPA

M=

B KEv SMART GRID LOCATIONS
PACITFI MORTHWESY

Olympic Pensinsula project e e

© 27 houses during one year

© Flexible appliances: HVAC,
cloth dryers and water boilers

® 5-min prices, 15-min consumption
©® Objective: limit max consumption

o |
JRC Workshop - Location Data, JRC, September 2016 CITI ES
» Centre for IT Intelligent Energy Systems



Price responsivity s
Flexibility is activated by adjusting the temperature reference
(setpoint)
T Temperature
satpoint
adjustment )
Max. é
Price sensitivity line =
with skope k 5:"
fin. E
| Standardized pric e ’ . L L
L 0 2 4 6 & 10 12 14 16 18 20 22
0 Hour of day
I Price
""""" std Price |

.

e Standardized price is the % of change from a price reference,
computed as a mean of past prices with exponentially decaying weights.

e Occupancy mode contains a price sensitivity with its related comfort
boundaries. 3 different modes of the household are identified (work, home, night).

Nl
JRC Workshop - Location Data, JRC, September 2016 / CITI ES
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Aggregation (over 20 houses)

i

il

i

| — Aggregated consumption [KWh] |

D]Ilhal

195

205

21
Days

Price-responsive temperature setpoint [°C]

------- Original ternperature setpoint [°C]

13 19.5 20 20.5 21 21.5 22 22.5 23
Doays
10
- - Price L
5 — l—J """"" Standardized price
Ol L b LT
. | I | I | I I |
19 19.5 20 20.5 21 21.5 22 22.5 23
Days

JRC Workshop - Location Data, JRC, September 2016
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Non-parametric Response on DTU
Price Step Change =

Model inputs: price, minute of day, outside temperature/dewpoint,
sun irrandiance
Olympic Peninsula

3 0.2 . -
= Consumption step response (Olympic Pen.)
5 < >
8 0 2 hours o
€
>
(7]
C
S

_0-2 | | | | 1

-10 -5 0 5 10 15 20
Hours
> CITIES
JRC Workshop - Location Data, JRC, September 2016
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Control of Energy Consumption

Model parameters

Consumption
references Price generator Prices

Price-response
estimator

> (controller)

Price-responsive
consumption

M=

Aggregated
consumption

L >

JRC Workshop - Location Data, JRC, September 2016
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Control performance

M=

With a price penality avoiding its divergence

* Considerable reduction in peak consumption

* Mean daily consumption shift

14

12

Consumption [kW]
co

Responsive
Unresponsive

20

o 150
E Generated
o .
100F N2 7 e Desired level
0 5 10 15 20
Hour of day

JRC Workshop - Location Data, JRC, September 2016
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Case study No. 5

Control of Heat Pumps (based on
varying prices)

nl
JRC Workshop - Location Data, JRC, September 2016 / CITI ES
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Grundfos Case Study

Schematic of the heating N

1=



Modeling Heat Pump and Solar Collector
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Avanced Controller

Formulation

The Economic MPC problem, with the constraints and the model,
can be summarized into the following formal formulation:

N-1
min ¢ =Y cu (4a)

who k=0
Subject to  xxi 1 = Axx + Buy + Edyk=0,1,...,N—1 (4b)
Vi — Ex5 k— 12 vl (4c)
Umin < Uk < Umax k:[}?l,“.}N—l (4d)
Atpin < Aup < Aupay k=0,1,...,N—1 (4e)
Ymin < Yk < Vmax K— 0:- 1; ey N (4f)

o |
JRC Workshop - Location Data, JRC, September 2016 Z CITI ES

~ Centre for IT Intelligent Energy Systems



EMPC for heat pump with
solar collector (savings 35 pct)
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CLTIES

Centre for IT-Intelligent Energy Systems in cities

Demo projects  Software solutions = Work Packages  Partners | Events = Communications = Publications = Vacant positions | Contacts

CITIES

Software solutions

Software for combined physical and statistical modelling

Continuous Time Stochastic Modelling (CTSM) is a software package for modelling and
simulation of combined physical and statistical models. You find a technical description Latest news
and the software at CTSM.info.

Ambassador Louise Bang
lespersen visited CITIES, October

Software for Model Predictive Control i

CITIES Korean International
Workshop — KIER, Daejeon,

HPMPC is a toolbox for High-Performance implementation of solvers for Model Predictive Korea, October 22nd 2015

Control (MPC). It contains routines for fast solution of MPC and MHE (Moving Horizon

AT = H
Estimation) problems on embedded hardware. The software is available at GitHub. iorlesiap o e te Rt on!
Sciences Collaboration in Energy

Systems Integration - DTL,

JRC Workshop - Location Data, JRC, September 2016 Z CITI ES
—
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Real-time climate impact of the
European electricity production

I FR (9 minutes ago) [source]
Emission rate; [l 88 gCOZeq/kWh
Electricity production (show emissions) by source:

wind | |

solar g}

hydro

biomass

coal |

oil

nuclear === I
gas \
other o

+ CH |
- OE
L =1
He GB
11T f

GHG intensiy [ |

2 {oCO2eqikwh)

Tomorrow o e o

[mu's)

GHG intensity [ |
- (gCOZegfkWh) =, Rt . : : R

Tomorrow Iy — S T v e
JRC Workshop - Location Data, JRC, September 2016 \ 1




Real-time electricity data sources

» Denmark: energinet.dk

» Finland: energinet.dk

» France: RTE

» Germany: Agora Energiewende
» Great Britain: ELEXON

= MNorway: energinet.dk

= Spain: REE

» Sweden: energinet.dk

Production capacity data sources

* Denmark
o Solar; wikipedia.org

o Wind: wikipedia.org
Finland
o Hydro: worldenergy.org

o Nuclear: iaea.org
o Wind: EWEA

France
o Solar; wikipedia.org

o Wind: ENEA
o Other: RTE

Germany: Fraunhofer ISE

Great Britain
o Gas: energy-uk.org.uk

o Hydro: wikipedia.org
o NMuclear: wikipedia.org
JRC Workshop - Locat o Solar: wikipedia.org
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Discussion

M=

IT-Intelligent Energy Systems Integration in Smart Societies can provide
virtual storage solutions (so maybe we should put less focus on electrical
storage solutions)

District heating (or cooling) systems can provide flexibility on the
essential time scale (up to a few days)

Gas systems can provide seasonal virtual storage solutions
Smart Cities are just smart elements of a Smart Society

We see a large potential in Demand Response. Automatic solutions, price
based control, and end-user focus are important

We see large problems with the tax and tariff structures in many countries
(eg. Denmark).

Markets and pricing principles need to be reconsidered; we see an
advantage of having a physical link to the mechanism (eg. nodal pricing,
capacity markets)

o |
JRC Workshop - Location Data, JRC, September 2016 CITI ES

~ Centre for IT Intelligent Energy Systems
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Some of the other
Demo-Projects In CITIES

e Control of WWTP (with ED, Kruger, ..)
e Supermarket cooling (with Danfoss, ..)
® Summerhouses (with DC, ..)

¢ Green Houses

o CHP

@ Industrial production

e EVs (optimal charging)

1!
JRC Workshop - Location Data, JRC, September 2016 /» CITI ES
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For more information ...

See for instance
www.henrikmadsen.org

www.smart-cities-centre.org

...0r contact

- Henrik Madsen (DTU Compute)
hmad@dtu.dk

Acknowledgement CITIES (DSF 1305-00027B)

JRC Workshop - Location Data, JRC, September 2016 /
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