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George Box: 

All models are wrong – but some are useful
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Modeling made simple
Suppose we have a time series of data:

         {X
t
} = X

1
, X

2
, .... , X

t
, ...   

The purpose of any modeling is to find a nonlinear 
function h({X

t
}) such that

           h({X
t
}) =  ε

t

Where {ε
t
} is white noise – ie no autocorrelation
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Methods in 
Annex 58 Guidelines

 Linear regression
(steady state approach)

 ARX model 
(dynamical, linear, time-invariant)

 Grey-box model (RC-network model +  )
 (dynamical, linear or nonlinear, time-varying)

The Annex 58 Guidelines contains recipes as well as examples are in     
  R (open source stat package)
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Contents

1.A single sensor (a smart 
meter)

2.Several sensors (and 
grey-box modelling)

3.Special sensors (model 
for occupant behavior) 
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 Part 1 
A single sensor (smart meter)

Smart Meters and data 
splitting

Smart Meters and 
Thermal Characteristics

Problem setting

Simple tool
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Case Study No. 1

Split of total readings into space heating and domestic 
hot water using data from smart meters



REBUS 2B meeting, 
Saint-Gobain, May 2017

Data
● 10 min averages from a number of houses
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Data separation principle
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Holiday period
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Non-parametric regression 

Every spike above Is regarded as hot water use.

Weighted average
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Robust Polynomial Kernel

To improve the kernel method

Rewrite the kernel smoother to a Least Square Problem

Make the method robust by replacing with

Make the method polynomial by replacing with
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Case Study No. 2

Identification of Thermal 
Performance using 

Smart Meter Data
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Example

U=0.21 W/m²KU=0.86 W/m²K

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)
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 Examples (2)

Measured versus predicted energy consumption for different dwellings



  

Characterization Smart Meter Data

Energy labelling

Estimation of UA and gA values

Estimation of energy signature

Estimation of dynamic characteristics

Estimation of time constants
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Simple estimation of UA-values
Consider the following model (t=day No.) 
estimated by kernel-smoothing:                           
                                                                             
                                                                             
                                                                          

The estimated UA-value is

With more involved (but similar models) also gA 
and wA values can be stimated
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Estimated UA-values
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Results 
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Skitse for WEB
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Perspectives for using 
Smart Meters

Reliable Energy Signature.

Energy Labelling

Time Constants (eg for night set-
back)

Proposals for Energy Savings:

Replace the windows?

Put more insulation on the roof?

Is the house too untight?

......

Optimized Control

Integration of Solar and  Wind 
Power using DSM
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 Part 2 
Several sensors 

Introduction to Grey-Box 
Modelling (a continuous-
discrete state space 
models)

A model for the thermal 
characteristics of a small 
office building

Models for control 
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Introduction to Grey-Box modelling



  

Traditional Dynamical Model

Ordinary Differential 
Equation:



  

Stochastic Dynamical Model

Stochastic Differential Equation:



The grey box model

Notation:

Diffusion term
Drift term

System equation

Observation equation

Observation noise
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Grey-box modelling concept

Combines prior physical knowledge with information in data

Equations and parameters are physically interpretable
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Forecasting and Simulation

One-step forecasts

K-step forecasts

Simulations

Control

 … of both observed and hidden states.

Grey-Box models are well suited for ...

 It provides a framework for pinpointing model deficiencies 
– like:

Time-tracking of unexplained variations in e.g. parameters

Missing (differential) equations

Missing functional relations

Lack of proper description of the uncertainty
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Grey-Box Modelling

Bridges the gap between physical and statistical 
modelling

Provides methods for model identification

Provides methods for model validation

Provides methods for pinpointing model deficiencies

Enables methods for a reliable description of the 
uncertainties, which implies that the same model can 
be used for k-step forecasting, simulation and control



REBUS 2B meeting, 
Saint-Gobain, May 2017

Grey-Box Modelling

Bridges the gap between physical and statistical 
modelling

Provides methods for model identification

Provides methods for model validation

Provides methods for pinpointing model deficiencies

Enables methods for a reliable description of the 
uncertainties, which implies that the same model can 
be used for k-step forecasting, simulation and control



5/24/17

Grey box model building framework

Kristensen et al. A method for systematic improvement of stochastic grey-box models. Computers and
Chemical Engineering, 28(8), 1431-1449 (2004).

Initial model
Transform to
 SDE model

Non
parametric
modelling

Tracking
variations

Estimate
parameters

Model
evaluation

Extend
model

Estimate
parameters

Model
evaluation

Final model
Yes No
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Case study 

Model for the thermal characteristics 
of a small office building
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Case study 

Models for Smart Control
(Ex: Control of Heat Pumps)
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Existing Markets - Challenges 

Dynamics

Stochasticity

Nonlinearities

Many power related services (voltage, frequency, balancing, spinning 
reserve, congestion, ...)

Speed / problem size 

Characterization of flexibility 

Requirements on user installations 
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Suggested ‘Market’ Setup (Smart-Energy OS)
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Aggregation (over 20 houses)
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Response on 
Price Step Change

5 hours
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Control of Power
 Consumption
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Control performance

● Considerable reduction in peak consumption



Smart Control of Houses with a Pool 





MPC Results 
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Part 3 
Special Data (eg Non-Gaussian)

Identification of Occupant Behavior 

Use of CO2 
measurements to model 
occupant behavior in 
summer houses 



Today’s  situation for indoor climate in buildings

User Telephone 
contact

Janitor (subjective 
assessment)

Adjustments to indoor 
climate

Designed based on 
assumptions
Focus on in-direct 
parameters to user 
satisfaction
Little knowledge of 
true user preferences

Temperature
Air Quality
Humidity
Draft
Radiation 
symmetry

D
es

ig
n

Se
rv

ic
e

Regulations
Specifications
Designers 
experience
Standards

Percent Persons Dissatisfied

No info of total user 
satisfaction
Subjective responses 
and actions
Building controlled 
after in-direct 
parameters to user 
satisfaction 
No systematic 
logging or learning



Digital revolution

When we use their product, they gather 
information on how we use it, our preferences 
etc.
Crucial information regarding how the product 
can be further developed

The «Internet Of Things» (IoT) and sensor 
technology enables us to do the same for 
buildings. But how?



Accuracy of the parameters used in building 
automation

Ole Fanger

Vs.

Building automation can be made more accurate to the user’s needs.
Rather than using theoretical values and «ad-hoc» user feedback, Smart Technology enables use of Big 
Data from sensors and continous user feedback.

+

+



Collect data on three levels

Warmer

By using a simple system for data collection via existing rooom automation systems, new smart sensors, 
smart phones with IoT and cloud computing we can achieve a high degree of accuracy for the automation 
system. Collecting data about the indoor environment and user at the same time

Skanska Comfort 
Control App

Cooler

DraftBad air

Smartphone or room tablet

Indoor climate?

Physical 
environment

Sensed 
environment

Total user 
satisfaction

Measurement of user satisfaction at 
entrance door

Please submit your 
feedback:



Example: 

Existing product/service enabling the user to give feedback regarding thermal comfort via smartphone app. 
The system uses this feedback to find the best temperature profile regarding economy and user satisfaction for 
the building. Claims to give 20% reduction in energy costs as well as improved user satisfaction. 
Could REBUS do the same, using the system to keep our customers happy and at the same time collect data 
helping us innovate and improve our buildings?
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Summer houses represent a special 
challenge 

Large variation in the number of people present in the 
house

Power Grids in summer house areas represent a special 
problem for some DSOs

Time series of CO2 measurements are the key to the 
classification
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Technical University of Denmark 12 January 2016
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Homogen Hidden Markov Model
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Inhomogen Hidden Markov Model
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Inhomogen Markov-switching with 
auto-dependent observations 
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Inhomogen Markov-switching AR(1)
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Technical University of Denmark 12 January 2016
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Some conclusions:

That the low activity state 5 is not very likely from 10 am to 11 pm.
The high activity is seen in the late afternoon.
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Some 'randomly picked' books on 
modeling  ....
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Thanks  ...

● For more information

        www.ctsm.info 

        www.henrikmadsen.org

        www.smart-cities-centre.org

● ...or contact 

– Henrik Madsen (DTU Compute) 

hmad@dtu.dk

● Acknowledgement CITIES (DSF 1305-00027B)

http://www.henrikmadsen.org/
mailto:hmad@dtu.dk
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