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George Box:

All models are wrong - but some are useful
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Modeling made simple

Suppose we have a time series of data.:

X}=X, X, 0, X, ...

t

The purpose of any modeling is to find a nonlinear
function h({X}) such that

h({X.}) = €,

Where {€ } Is white noise — ie no autocorrelation

Annex 71 meeting,
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Methods In
Annex 58 Guidelines

e Linear regression
(steady state approach)

¢ ARX model

(dynamical, linear, time-invariant)

e Grey-box model (RC-network model + )
(dynamical, linear or nonlinear, time-varying)

The Annex 58 Guidelines contains recipes as well as examples are in
R (open source stat package)



GUIDELINES FROM ANNEX 58

Static and dynamic conditions: estimate the Heat Loss Coefficient

(HLC) and gA-value from ‘simple’ data:

@ Constant indoor temperature

@ Model input: ambient temperature and global radiation (wind
not included in guideline models)

@ Model output: heat load

Grey-box models for detailed building behavior characterization:

@ Varying indoor temperature (turn the heating on/ off)
@ Model input: ambient temperature, global radiation, wind

@ Model output: indoor air temperature

Procedures (recipes) for model selection and validation, with
examples in R

Annex 71 meeting,
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Contents

1.A single sensor (a smart
meter)

2.Several sensors (and
grey-box modelling)

3.Special sensors (model
for occupant behavior)
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Part 1
A single sensor (smart meter)

Ll

@ Smart Meters and data
splitting

@ Smart Meters and
Thermal Characteristics

> Problem setting
= Simple tool

Annex 71 meeting,
Loughborough, April 2017



Case Study No. 1

Split of total readings into space heating and domestic
hot water using data from smart meters

Annex 71 meeting,
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Data

* 10 min averages from a number of houses

House 1 House 2 ¥ House3 House 4

Year build 1963 Year build 1937 Year build 1963 Year build 1967
House size 119 m? House size 86 m?2 House size 140 m?2 House size 137 m?2
Occupants 2 Occupants 2 Occupants 2 Occupants 5

Annex 71 meeting,
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Data separation principle

House Characteristic
e.g.size,insulating power, solar absorption

Heating Consumption

Occupants Characteristic
e.g.open/close windows, turn up/down the heating,
night-time drop

Raw Data

Hot Water Consumption
e.g.shower, dishwashing

Annex 71 meeting,
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Holiday period

B House: 2, Occupants: 2

Consumption [MJ/h]

[ [ [ [ [ [
Mar 01 Mar D6 Mar 12 Mar 18 Mar 24 Mar 30
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Non-parametric regression

N =X :
R e 1
_ 2_s— Yokd h k(u) = ‘.—E‘XP{_%}

g(ﬁ'ﬁ) N X AT
Z::?:l 'I“{r h_}iﬂ 2

Weighted average

Every spike above 1.25 . g(r) Is regarded as hot water use.
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Kernel

Raw Data
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Robust Polynomial Kernel

To improve the kernel method

Rewrite the kernel smoother to a Least Square Problem

k{r — X}

N
1 2
arg min — Z wy(x) (Y, —60)° we(x) = —— -
o1y s=1 N Zs:l }l.?-{."i'_f o ‘X‘i}

Make the method robust by replacing (Y, — H)E with

1 9 -
=~ if [e] <~
.IGHIII)FI‘(E) =47 ) . co=Y,— 0
le] — 5 if |g] >~

2

Make the method polynomial by replacing #  with

P =0+ 01(X; — o) + 0o(X; — 2)°
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Robust Polynomial Kernel

Raw Data
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Case Study No. 2

Identification of Thermal
Performance using
Smart Meter Data




Characterization Smart Meter Data

@ Energy labelling
@ Estimation of UA and gA values
@ Estimation of energy signature

@ Estimation of dynamic characteristics
@ Estimation of time constants



Simple estimation of UA-values

@ Consider the following model (t=day No.)
estimated by kernel-smoothing:

Qe = Qo(t)+ col(t)(Tit— Tor)+cr(t)(Tit—1— Tar—1) (1)

2 The estimated UA-value Is

Fal

UA(t) = () + &(t) 2)

a2 With more involved (but similar models) also gA
and wA values can be stimated

Annex 71 meeting,
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Estimated UA-values
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Results

UA oua gA™ wAp™ wAG" wAy™ T
W/°C W W/°C W/°C W/C °C

4218598 211.8 104 597.0 11.0 3.3 8.9 23.6
4218600  98.7 10.8  -96.2 23.6 10.1 13.0 22.3
4381449 228.2 12.6 1012.3 29.8 42.8 39.7 194

4711160 1554 6.3 5188 14.5 4.4 9.1 225
4711176  178.5 7.3 800.0 1.9 -7.6 8.5 264
4836681 155.3 81  5H91.0 39.5 28.0 214 23.5

4836722 236.0 17.7 1578.3 4.3 3.3 18.9 23.5
4986050 159.6 10.7  715.7 10.2 7.5 7.2 208
5069378 1448 104 87.6 3.7 1.6 17.3 21.8
5069913 2078 9.0 962.5 3.7 8.6 10.6 22.6
5107720 189.4 154  657.7 41.4 29.4 16.5 21.0

Notice: Still some issues with negative values but often they
are not significiant.
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Based on measurements from the heating season 2009/2010 your typical indoor temperature

during the heating season has been estimated to 24 °C'. If this is not correct vou can change it

here

2 |56,

If vour house has been left empty in longer periods with a partly reduced heat supply you have

the possibility of specifving the periods in this | calendar |.

According to BBR the area of your house is 155 m? and from 1971.

Based on BBR information it is assumed that you do not use any supplementary heat

supply. If this is not correct you can specify the type and frequency of use here:

e Wood burning stove used @ times per week in cold periods.

e Solar heating | v/n |, approximate size of solar panel @ % | 0| meters.

Based on the indoor temperature 24 °C’', the use of a wood burning stove 0 times per week, and
I 2 I

no solar heating installed, the response of your house to climate is estimated as:

e The response to outdoor temperature is estimated to 200 W/°C' which given the size

and age of your house is e:{pectable@.

On a windy day the above value is estimated to increase with 60 W /°C' when the wind
blows from easterly directions. This response to wind is relatively high and
indicates a problem related to the air sealing on the eastern side of the house.

On a sunny day during the heating season the house is estimated to receive 800 W as an
average over 24 hours. This value is quite expectable.

“Many kind of different recommendations can be given here.




Perspectives for using
Smart Meters

# Reliable Energy Signature.
@ Energy Labelling

# Time Constants (eg for night set-
back)

@ Proposals for Energy Savings:

@ Replace the windows?
@ Put more insulation on the roof?

@ |s the house too untight?

@ Optimized Control

@ Integration of Solar and Wind
Power using DSM

Annex 71 meeting,
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Part 2
Several sensors

@ Introduction to Grey-Box
Modelling (a continuous-
discrete state space
models)

@ A model for the thermal
characteristics of a small
office building

@ Models for control

Annex 71 meeting,
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Introduction to Grey-Box modelling
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Traditional Dynamical Model

Input

@ Ordinary Differential

Equation:
dA = —KAdt
Elimination Y = 14 + €

Concentration - logscale

1
25

Time



Stochastic Dynamical Model

Input

@ Stochastic Differential Equation:

Compartment

dA = —KAdt-+ odw
Y = A +e

Elimination

Concentration - logscale
|
¥
1

Lo

— ks ik

B m ok
! !

1 | | |
10 15 20 25
Time

o]
[4; WSS



The grey box model

Drift term

X, dt +

h{ X, ug, 1. 0

/\

| Diffusion term

L

Notation:
X;: State vanables
;.  Input variables
f:  Parameters
Y.  Output variables
t: Time
wy:  Standard Wiener process

White noise process with |

V (0, S)

System equation

Observation equation

Observation noise

=
—]
(—

i



Grey-box modelling concept

Deterministic
equations

Physical
knowledge

Detailed
submodels

White Grey Black

Prior
Knowledge

@ Combines prior physical knowledge with information in data

» Equations and parameters are physically interpretable

Annex 71 meeting,
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Forecasting and Simulation

Grey-Box models are well suited for ...

* One-step forecasts

* K-step forecasts

* Simulations

+ Control

¢ ... of both observed and hidden states.

» It provides a framework for pinpointing model deficiencies
— like:
# Time-tracking of unexplained variations in e.g. parameters
+ Missing (differential) equations
+ Missing functional relations
* Lack of proper description of the uncertainty

Annex 71 meeting,
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Grey-Box Modelling

# Bridges the gap between physical and statistical
modelling

# Provides methods for model identification

# Provides methods for model validation

@ Provides methods for pinpointing model deficiencies

# Enables methods for a reliable description of the
uncertainties, which implies that the same model can
be used for k-step forecasting, simulation and control

Annex 71 meeting,
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Grey-Box Modelling

# Bridges the gap between physical and statistical
modelling

# Provides methods for model identification

# Provides methods for model validation

@ Provides methods for pinpointing model deficiencies

# Enables methods for a reliable description of the
uncertainties, which implies that the same model can
be used for k-step forecasting, simulation and control
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DTU Informatics

Grey box model building framework

Non :
Initial model |=—> U ELESIH [E <—| parametric |<=—— Tra_tclglng
SDE model modelling variations
| A
! |
Estimate Model
parameters evaluation
| A
! |
Yes N -
. Model 0 Extend Estimate
e : —> —
el el evaluation model parameters
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Case study

Model for the thermal characteristics
of a small office building

Annex 71 meeting,
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TEST CASE: ONE FLOORED 120 M? BUILDING

Find the best model describing the
heat dynamics of this building

([11, [4])

Annex 71 meeting,
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DATA

Measurements of:

yt Indoor air
temperature

T, Ambient
temperature

@y, Heat input

o, Global
irradiance

Annex 71 meeting,
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SELECTION PROCEDURE

Simplest model

Interior i Heater i solar i Envelope E Ambient
T ! ! ! fia
- e L E i E Al E E I
[terative procedure using o= in(@ (D O
statistical tests ' S '
= y
Begin with the
simplest model ) \
First extension: heater part
l | | | |
Interior | Heater | Solar | Envelope | Ambdent
o T: | I I R;., |
Model fitting | | | AN |
| R é | | |
| i | Aws | |
1 a== "' g% ' : O
Likelihood-ratio , : GEF o : :
DK tests of extended End selection T T T T
models I = I I
>
L A8 Start Modelt;
Evaluate the E{H’ yh'} 2452.6
selected model m (3]
1 MDdEfTiTE Mﬂdff']"i’rm Mﬂdff'r-l’['5 MDdf!TiTh
4 1(8;:Vy) 3628.0 36394 3884 4 J911.1
™ 10 10 10 10
DTU Compute 7 ;'L'_

titut 1 matik c



EVALUATE THE SIMPLEST MODEL

Inputs and residuals

Cumulated periodogram

ACF
4

.....................

Loughborough April 2017



Inputs and residuals

| B Y

T ]
o
=
= 1%‘
Ty ]
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I'.?- l ] ] | ] ] | |
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Time
ACF of residuals
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GREY-BOX MODELLING

Continuous time models (grey-box: stochastic state-space model)

States = Fun, (States, Inputs) + Fun; (Inputs) - SystemError
Measurements = Fungs(States, Inputs) + Funy (Inputs) - MeasurementError

@ Used for buﬂdings (single- and multi-zone), walls, systems (hot water
tank, integrated PV, heat pumpts, heat exchanger, solar collectors, ...)

@ Formulate the model based on physical knowledge

@ Maximum likelihood estimation

(we have the entire statistical framework available)

@ Description of the system noise is part of the model provides
some very useful possibilities

(e.g. control the weight of data in the estimation depending on input signals)

@ Software, for example our R package CTSM-R !

_ Inttp://ctsm.info

Annex 71 meeting,
Loughborough, April 2017



Case study

Models for Control
(Control of Heat Pumps)
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Existing Markets - Challenges

Dynamics
Stochasticity

Nonlinearities

¢ ¢ ¢ ¢

Many power related services (voltage, frequency, balancing, spinning
reserve, congestion, ...)

‘»

Speed / problem size
©® Characterization of flexibility

® Requirements on user installations

Annex 71 meeting,
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Different possibilities can be investigated for the coordination of the

flexible resources:

Market- based approach

‘ Market

e

Energy _ Energy
Supplier VPP VPP Supplier

- J‘ GA ;J:

PA PA LN
PA Hi 1
‘ P"!"' r | : uJ ) PA ()
" / ..’| GA x‘:';f ~— o GA :x.'_'}:

(oot

Market operation is intended all the
way down to the prosumers’ level.

Annex 71 meeting,
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Control- based approach

‘ Market

Energy Energ}.r

Supplier Aggregator Supplier

Sub Sub
Aggregator Aggregator

e

| | E E Controller | Controller | | Controller E
PN ' Iliil:

Dlrect Cr::ntrol J' Indirect Control

Control problem is formulated at
the prosumers’ level.



Suggested ‘Market’ Setup (Smart-Energy OS)

Space
Bidding + .
Country Market clearing . Bidding &
\ . . Clearing
Region IR :
Purpose based :
Stochastic Control . Control based
City . . . 2
\\\H : ngm (U-Uref)
District Economic Model T .
Predictive Control . _
. min E (pU)
House

Ann Time
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Proposed methodology
Control-based methodology -

J!'h‘.l?
min E[Z Wikl |2 — Zreskl| + 1llPE — Preskll]

|'I g k=0 /

Sub-Aggregator | . Aggregated Loads - \ ——
zref P ] __________d_-_f--"";
_i “ref p i [ Adv. |u y, —_—

. Py Regulator —> Controller — DER1_

| TAe Y em o2l

z . ["|Controller| _'@4

d Estimator Ad ui Vil

——* i V- [ ’|DERJ

: P Controller

eSS
/ TN
We adopt a control-based f mn  EDY 6z uinpn)] \

approach where the price | k=0 j=1 \
\ s.t. xpy = Az + Buy 4+ Ed,, '|

becomes the driver to manipulate \ e = Ci

the .behawour of a certain pool ) < < g
flexible prosumers. \u?m << ”;”V
H"-——_ _ v_‘

LUUYIINUIVUYIL, ApNIII 2V L/



Aggregation (over 20 houses)

3 —
| — Aggregated consurmption [lKWh] |
2 —
I ot M*ﬂ
ol n A n i | | | | |
13 19.5 20 20.5 21 21.5 22 22.5 23
Doays

Frice-responsive temperature setpaint [*C]

Criginal ternperature setpoint [*C]

12 12.5 20 20.5 21 21.5 22 22.5 23
Days
10~
— L Price L
5 — l—J """"" Standardized price
Ol T T
} | | | | | | | I
19 19.5 20 205 21 215 22 22.5 23
Doays
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Response on
Price Step Change

g 0.2 I | T T T
X, — Consumption step response (Olympic Pen.)
o
i)
o
2 0
-
("))
C
S
_0'2 | ] ] | |

|
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-
|
wn
=
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—_—
=
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wn
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Consumption
references

-
v il

Control of Power
Consumption

Model parameters

Annex 71 meeting,

Price generator
(controller)

Price-response
estimator

Price-responsive
consumption

Aggregated
consumption
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Control performance

* Considerable reduction in peak consumption

14

12

Responsive
Unresponsive

Consumption [kW]
co

2 1 1 1 1
0 5 10 15 20
o 150F e N
2 Generated
o )
100F N .7 ey Desired level
0 5 10 15 20

Hour of day

Annex 71 meeting,
Loughborough, April 2017



Smart Control of Houses with a Pool

PilotB SN-10 signal overview
revision 1.0 (CITIES add-on)

Sun heating panel

-

[ I =]
o a = =
=23 =
[ )
'-'_"‘_'4' o

— 0w T Od

Ead

RELAY

-—

L]

— &

+24VDC
+5YDC

SN-10
lav(.rid

3
:Engéé
28339 =

Temp R1
Temp R2

BUMbe

SSSSSSSSS== ACT? mEpRRE
S=SSSS===== ACT4
=====c=====—*%_ = é%
ACT1
I gl Temp F1
| . % Temp F2
?&3 -----------
< i &
X - I I
e
Heat
exchanger

RELAY1
RELAY2

¢

S01 S02

S0 PWR S0 PWR

()

I =




3.2 OPTIMIZATION PROBLEM

The MPC controller solves the following mixed integer linear optimization problem:

N-1
min ) il (3.2a)
“ k=0
S.t. Xps1 = Aq(To, w, Ta)xg +Ba(To, w, Tg) (3.2b)
Vi =Ca(Ty, w, Tg) X (3.2¢)
up €10, 1} (3.2d)
Ymin = Vk = Vmax (3.2e)

where (3.2b) and (3.2c) is discretized state-space model of (2.6); u; is the valve position (1 -
open; 0 - closed); yi = [Tink Tout il T. N is the predictive horizon; cy. is the electricity price.




MPC Results

temperatures valve position
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Part 3
Special Data (eg Non-Gaussian)

Identification of Occupant Behavior

@ Use of CO2
measurements to model
occupant behavior in
summer houses

Annex 71 meeting,
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Summer houses represent a special
challenge

i

® Large variation in the number of people present in the
house

® Power Grids in summer house areas represent a special
problem for some DSOs

® Time series of CO2 measurements are the key to the
classification

55
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The Model Space

6 ~ f(ﬁﬂxedjt?"') —|‘g(Urand0m;- t;"') (13)

dX; ~ Dynamical model (9) (1b)
Yt(l) — Electrical consumption
Y/?) = Noise (indoor)
1c
Y®) = CO, (indoor) (Lc)
@ 0O parameter vector for population/hierarchical model
@ Time, weather, demographics
@ dX: state vector described by some dynamical model depending on @
@ People, consumption, windows 07U
@ Y's: Observed measurements related to occupancy behavior, including -
A
A

measurements inside and outside the building and smart metering data



Hidden Markov Model

te N (2)

p(Xe| Xe—1) = p(Xe| XD,
te N (3)

p(Ye|Xe) = p(Ye| X, YE=1)),

DT

Figure: Directed graph of basic HMM. The index denotes time.

 —

i



Markov Chains

Discrete state vector at time t, X;, with m states.

Transition probability
p(Xt :j|Xt—s — ".)

One-step transition probability
Yij,t = P(Xe = j| Xt—1 = 1)

One-step transition probability matrix from time t — 1 to t

Y11t 0 Yimt
M = ' (6)
Tml,t " Ymm.t EIE

where the row must sum to 1.



Homogen Hidden Markov Model

Setting

g =h(COq4)
P(It\fﬂt—ﬂ ~T

p(y|ze) ~ N (i,02) fori=1,2,--,m

Note that there is no time dependence in the transition probabilities in the homogen case.
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Table 8.4: Comparison of univariate (log transformed C'Oq) homogen HMMs for 2 to 3 states.
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L

D

AIC

BIC

2 states
3 states
4 states
5 states

-9378
-4292
-800
2181

6 18768

12
20
30

8609
1640
-4303

18814
8701
1795
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Figure 8.7: Global Decoding of the HMM (log CO4) with 5 states.
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Density
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Forecast pseudo-residual

Sample Quantiles
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Inhomogen Hidden Markov Model

Setting

g =h(COqy)
p(zy|zi—1) ~ T
Py |:) "”:"“ﬂ'r(ﬁi-aﬂ?] fori=1,2,---,m

Note that there is time dependence in the transition probabilities in the inhomogen case.
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Inhomogen Markov-switching with
auto-dependent observations
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Fipure 8.10: Directed graph of Markov switching AR(1).
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Inhomogen Markov-switching AR(1)

Setting

Ut = ]I(COM)
plzg|zi—1) ~ Ty

p(:’yi‘ﬂfi!yt—l) N-NF(C'E'- —|_(.=r3?::‘iﬁ—l ) US) for i = L2 ;M

Note that there is time dependence in the transition probabilities in the inhomogen case.
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Interpretation of the states

State 3: Outdoor interaction

State 4: Presence (high activity)

State 5: Presence (long term, low activity)

70




71

Forecast Pseudo-residual

Sample Quantiles

f\ » Std. Normal

Jun Jul Aug Sep Oct Nov

4 2 0 2 4

Forecast Pseudo-residual

Time
.- A 10+
)| 08 -
w06 -
0- 204
-2 - 02-
-4 - | | | | 00

4 -2 0 2 4
Theoretical Quantiles

Figure 8.11: Model diagnostics of the final model.
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Figure 8.16: Transition probabilities over the day of the final model. The lower right plot is the stationary
distribution.
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Figure 8.17: Profile of the states over the course of the day. Le. Stacked stationary probabilities over
the course of the day of the final model.

Some conclusions;

That the low activity state 5 is not very likely from 10 am to 11 pm.
The high activity is seen in the late afternoon.
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Some 'randomly picked' books on
modeling ....
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Thanks ...

e For more information
www.ctsm.info
www.henrikmadsen.org
www.smart-cities-centre.org

e ...0r contact

- Henrik Madsen (DTU Compute)
hmad@dtu.dk
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