

Emission/Cost Saving by Data Intelligent Control of Motor Systems

Henrik Madsen, DTU Compute http://www.henrikmadsen.org http://www.smart-cities-centre.org

n 2015 more than 42 pct of electricity load was covered by wind power.

For several days the wind power production was more than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power load was covered by wind power

Eighth Clean Energy Ministerial (CEM8) – Side Event on Motors

.... balancing of the power system

4500

4000

3500

3000

2500

2000

1000

500

■ Wind power □ Demand

In 2008 wind power did cover the entire demand of electricity in 200 hours (West DK)

50 % wind energy

Energy Systems Integration

Energy system integration (ESI) = the process of optimizing energy systems across multiple pathways and scales

Smart-Energy OS

CITIES Centre for IT Intelligent Energy Systems

Eighth Clean Energy Ministerial (CEM8) – Side Event on Motors

DTU

Cyber-physical Models

Grey-box modelling techniques is used to establish **models** for real-time and data intelligent operation of *future electric motor systems*

Cloud-based control and optimization Logical drawing of control-loop

Case study

Control of Power Consumption to Summer Houses with a Pool

Lab testing

SN-10 Smart House Prototype

Smart Control of Houses with a Pool

_

Case study

Price-based Control of Heat Pumps

Modeling Heat Pump and Solar Collector

Simplified System

Avanced Controller

Economic Model Predictive Control

Formulation

The Economic MPC problem, with the constraints and the model, can be summarized into the following formal formulation:

$$\min_{\{u_k\}_{k=0}^{N-1}} \phi = \sum_{k=0}^{N-1} c' u_k$$
Subject to $x_{k+1} = Ax_k + Bu_k + Ed_k k = 0, 1, \dots, N-1$ (4b)
 $y_k = Cx_k \qquad k = 1, 2, \dots, N-1$ (4c)
 $u_{min} \le u_k \le u_{max} \qquad k = 0, 1, \dots, N-1$ (4d)
 $\Delta u_{min} \le \Delta u_k \le \Delta u_{max} \qquad k = 0, 1, \dots, N-1$ (4e)
 $y_{min} \le y_k \le y_{max} \qquad k = 0, 1, \dots, N$ (4f)

CITIES Centre for IT Intelligent Energy Systems

Case study

Data Intelligent Control of Wastewater Treatment Plants

Kolding WWTP

Eighth Clean Energy Ministerial (CEM8) – Side Event on Motors

DTU

Energy Flexibility in Wastewater Treatment

WWTP Control goal

minimize $p_{fee}Q^TS_N + p_{elspot}^Tu$

minimize overflow $+ p_{elspot}^T f(Q)$

Eighth Clean Energy Ministerial (CEM8) – Side Event on Motors

Sewer System Annual Elspot Savings

Summary

- A Smart-Energy OS for implementing data intelligent price and/or CO2 based control of motor systems in integrated energy systems has been described
- Built on: Big Data Analytics, Cyber Physical Models, Stochastic opt./control, Forecasting, IoT, IoS, Cloud computing, ...
- Modelling: Toolbox CTSM-R for combined physical and statistical modelling (grey-box modelling)
- **Control:** Toolbox MPC-R for Model Predictive Control
- Simulation: Framework for simulating flexible power systems.

