

#### **Energy Systems Integration**



#### Henrik Madsen, DTU Compute http://www.henrikmadsen.org http://www.smart-cities-centre.org







.... balancing of the power system



■ Wind power □ Demand

In 2008 wind power did cover the entire demand of electricity in 200 hours (West DK)





■ Wind power □ Demand

#### In 2015 more than 42 pct of electricity load was covered by wind power.

For several days in 2014 the wind power production was more than 120 pct of the power load.

INNOVATIONSNETVÆRKET

July 10th, 2015 more than 140 pct of the power load was covered by wind power

## **Energy Systems Integration**



**Energy system integration (ESI)** = the process of optimizing energy systems across multiple pathways and scales









## **ESI – Hypothesis**

#### The **central hypothesis of ESI** is that by **intelligently**

**integrating** currently distinct energy flows (heat, power, gas and biomass) in we can enable very large shares of renewables, and consequently obtain substantial reductions in CO2 emissions.

**Intelligent integration** will (for instance) enable lossless 'virtual' storage on a number of different time scales.





## Intelligent Integration and CITIES

**Center for IT-Intelligent Energy Systems (CITIES)** is establishing ICT solutions for **design and operation of integrated electrical, thermal, fuel pathways at all scales**.

CITIES is the largest Smart Cities and ESI research project in Denmark – see http://www.smart-cities-centre.org .



### **ESI – Concept Challenges**



Energy Systems Integration using data and IT solutions leading to models and methods for planning and operation of future electric energy systems.







## **Energy-System OS**



CITIES Centre for IT Intelligent Energy Systems



ntr

#### **Direct and Indirect Control** For DC info about individual states and constraints are needed



(a) Indirect control

(b) Direct control





DTU

## Example: Storage by Energy Systems Integration



Denmark (2014) : 48 pct of power load by renewables (> 100 pct at some days in January)

#### (Virtual) storage principles:

- Buildings can provide storage up to, say, 5-12 hours ahead
- District heating/cooling systems can provide storage up to 1-3 days ahead
- Gas systems can provide seasonal storage





#### Examples: ESI Projects in CITIES

- Control of WWTP (ED, Kruger, ..)
- Heat pumps (Grundfos, ENFOR, ..)
- Supermarket cooling (Danfoss, TI, ..)
- Summerhouses (DC, Nyfors, ..)
- Green Houses (NeoGrid, ENFOR, ....)
- CHP (Dong, Fyns Fjernvarme, ...)
- Industrial production
- VE (charging)









#### News (DTU Compute is leading): ESI Joint Program in EERA









#### **Thanks for your attention!**

# For more information: hmad@dtu.dk





