Using stochastic differential equations for wind and solar power forecasting

> Henrik Madsen, Emil Banning Iversen, Peder Bacher, Jan Kloppenborg Møller

Department of Applied Mathematics and Computer Science, DTU

eSACP Project Meeting, DTU

October 5, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Introduction

Probabilistic Forecasting

Stochastic Differential Equations in Forecasting

Example: A Probabilistic Model for Wind Power

Example: Spatio-Temporal Model for Solar Power

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using Probabilistic Forecasts

Conclusion

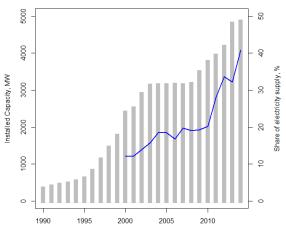
Motivation

An Energy System with a Large Renewable Component

イロト イポト イヨト イヨト

source: http://www.imm.dtu.dk/ jbjo/smartenergy.html

Wind Power in Denmark



Year

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Renewable Energy and Uncertainty

Challenges with Renewable Energy

- ▶ Wind, solar and wave energy depend on the weather system.
- The weather is inherently uncertain, implying that
- Wind, wave and solar energy is intermittent and uncertain.
- This uncertainty affects the supply and demand for energy, the energy infrastructure and the economics of the energy system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Renewable Energy and Uncertainty

Challenges with Renewable Energy

- ▶ Wind, solar and wave energy depend on the weather system.
- The weather is inherently uncertain, implying that
- ▶ Wind, wave and solar energy is intermittent and uncertain.
- This uncertainty affects the supply and demand for energy, the energy infrastructure and the economics of the energy system.

Overcoming the Challenges

- Understanding the uncertainty associated with renewable energy becomes valuable.
- Input knowledge of uncertainty into decision problems.
- Solve decision problems for minimizing the issues related to this uncertainty.

Topics related to eSACP

Aims

► To produce probabilistic forecasts quantifying this uncertainty.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► To consider applications of such probabilistic forecasts.

Topics related to eSACP

Aims

- To produce probabilistic forecasts quantifying this uncertainty.
- To consider applications of such probabilistic forecasts.

Approaches

- Modeling uncertainty using:
 - Stochastic differential equations
 - Stochastic partial differential equations
- Applying optimization tools incorporating uncertainty:
 - Stochastic Programming based on scenarios for future states)

Probabilistic Forecasting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

What is Probabilistic Forecasting

Point Forecast

► Focus on describing typical or most likely outcome.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• A single value point value for each point in time.

What is Probabilistic Forecasting

Point Forecast

- ► Focus on describing typical or most likely outcome.
- A single value point value for each point in time.

Probabilistic Forecast

- Describes (features of) the predictive distribution.
- Probabilistic if it makes use of probabilities in the forecast.
- Examples of probabilistic forecasts include:
 - Quantile forecasts
 - Prediction intervals
 - Predictive densities
 - Scenarios
- These options are used in some state-of-the-art tools for wind power forecasting (WPPT) and solar power forecasting (SolarFor)

For more information we refer to https://www.enfor.dk)

Stochastic Differential Equations in Forecasting

The Basic Setup

The basic stochastic differential equation formulation:

$$X_t = X_0 + \int_0^t f(X_s, s) ds + \int_0^t g(X_s, s,) dW_s,$$

(ロ)、(型)、(E)、(E)、 E) の(()

The Basic Setup

The basic stochastic differential equation formulation:

$$X_t = X_0 + \int_0^t f(X_s, s) ds + \int_0^t g(X_s, s,) dW_s,$$

We use the short-hand interpretation of this integral equation:

$$dX_t = f(X_t, t)dt + g(X_t, t)dW_t$$

$$Y_k = h(X_{t_k}, t_k, e_k).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Basic Setup

The basic stochastic differential equation formulation:

$$X_t = X_0 + \int_0^t f(X_s, s) ds + \int_0^t g(X_s, s,) dW_s,$$

We use the short-hand interpretation of this integral equation:

$$dX_t = f(X_t, t)dt + g(X_t, t)dW_t$$

$$Y_k = h(X_{t_k}, t_k, e_k).$$

The predictive density, j(x, t), can be found by solving (with $g(X_t, t) = \sqrt{2D(X_t, t)}$):

$$\frac{\partial}{\partial t}j(x,t) = -\frac{\partial}{\partial x}\left[f(x,t)j(x,t)\right] + \frac{\partial^2}{\partial x^2}\left[D(x,t)j(x,t)\right].$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: A Probabilistic Model for Wind Power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Data

- The Klim Fjordholme wind farm with a rated capacity of 21 MW.
- Hourly measurements for three years.
- Numerical weather predictions from Danish Meteorological Institute, updated every 6 hours.

A SDE Model

Wind dynamics given by:

$$dX_t = \left(\left(1 - e^{-X_t} \right) \left(\rho_x \dot{p}_t + R_t \right) + \theta_x (p_t \mu_x - X_t) \right) dt + \sigma_x X_t^{0.5} dW_{x,t}$$

$$dR_t = -\theta_r R_t dt + \sigma_r dW_{r,t}$$

$$Y_{1,k} = X_{t_k} + \epsilon_{1,k}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

A SDE Model

Wind dynamics given by:

$$dX_t = \left(\left(1 - e^{-X_t} \right) \left(\rho_x \dot{p}_t + R_t \right) + \theta_x \left(p_t \mu_x - X_t \right) \right) dt + \sigma_x X_t^{0.5} dW_{x,t}$$

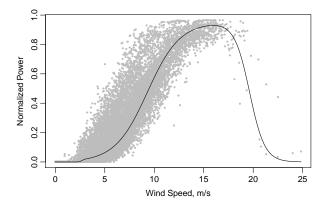
$$dR_t = -\theta_r R_t dt + \sigma_r dW_{r,t}$$

$$Y_{1,k} = X_{t_k} + \epsilon_{1,k}$$

Wind to power dynamics given by:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Power Curve



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Multi-Horizon Probabilistic Forecasts

Predictive density of production in percent out of rated power for the Klim wind farm:

Model Performance 1-step-ahead

Model performance on 1-hour ahead predictions on test set:

		Test Set		
Models	Parameters	MAE	RMSE	CRPS
Climatology	-	0.2208	0.2693	0.1417
Persistence	1	0.0509	0.0835	0.0428
AR	4	0.0527	0.0820	0.0417
ARX	5	0.0510	0.0795	0.0406
ARX - TN	7	0.0648	0.0848	0.0444
ARX - GARCH	9	0.0505	0.0797	0.0382
ARX - GARCH - TN	11	0.0575	0.0823	0.0401
Model	19	0.0471	0.0773	0.0327

Model Performance on Multiple Horizons

Model multi-horizons predictions performance on test set:

Models	CRPS for different horizons			Energy Scor	
	1 hour	4 hours	12 hours	24 hours	
ARX - GARCH ARX - GARCH - TN - iterative	0.0382 0.0401	0.0704 0.0783	0.0787 0.1043	0.0789 0.1225	1.18 1.94
Model	0.0327	0.0641	0.0779	0.0836	0.73

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example: A Spatio-Temporal Forecast Model for Solar Power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Data

- A solar power plant with a nominal output of 151 MW.
- ▶ Measurements of 91 inverters every second for one year.
- We consider a cutout of 5 by 14 inverters for modeling.

Motivation

Challenges

- ► A high dimensional problem, with 70 inverters and forecast horizon of two miutes.
- Classical methods are have a large high dimensional parameter space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

As a result typically a large computational burden.

Motivation

Challenges

- ► A high dimensional problem, with 70 inverters and forecast horizon of two miutes.
- Classical methods are have a large high dimensional parameter space.
- As a result typically a large computational burden.

Approach

- A model that incorporates the physics of the system.
- Good local models should lead to good global models.
- A physical understanding of the system leads to fewer parameters and lowered computational burden.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Framework

We propose a model of the form:

$$dU_{i,j,t} = f(\mathbf{U}_{i,j,t}, t) dt + g(U_{i,j,t}, t) dW_{i,j,t}$$
(2)
$$Y_{l,k} = h(\mathbf{U}_{t_k}, t_k) + \epsilon_{l,k},$$
(3)

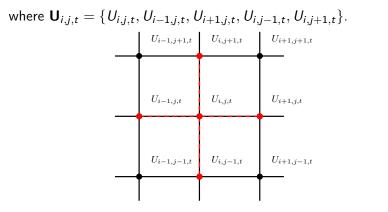
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $\mathbf{U}_{i,j,t} = \{U_{i,j,t}, U_{i-1,j,t}, U_{i+1,j,t}, U_{i,j-1,t}, U_{i,j+1,t}\}.$

The Framework

We propose a model of the form:

$$dU_{i,j,t} = f(\mathbf{U}_{i,j,t}, t) dt + g(U_{i,j,t}, t) dW_{i,j,t}$$
(2)
$$Y_{l,k} = h(\mathbf{U}_{t_k}, t_k) + \epsilon_{l,k},$$
(3)



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

SPDE Model

Stochastic Partial Differential Equation

- Normalize the parameters with the spatial distance in appropriate way.
- Parameters become grid-invariant.
- Can be interpreted as a stochastic partial differential equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SPDE Model

Stochastic Partial Differential Equation

- Normalize the parameters with the spatial distance in appropriate way.
- Parameters become grid-invariant.
- Can be interpreted as a stochastic partial differential equation.

The dynamical model interpretation:

$$dU(x,t) = \bar{v}\theta\nabla U(x,t)dt + \sigma dW(x,t),$$

with the deterministic part $dU(x, t) = \bar{v}\theta\nabla U(x, t)dt$ being a uni-directional wave equation.

End up with a model with 4 parameters and the accompanying estimates:

$\hat{\theta}$	$\hat{\mu}$	$\hat{\sigma}$	$\hat{\sigma}_{\epsilon}$
0.0631	0.703	0.00865	10^{-10}

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Predicting Spatio-Temporal Power Output

Power production in percent out of rated power.

イロト 不得 トイヨト イヨト

э.

Model Performance:

Model compared to benchmarks.

Score	Cloud Speed Persistence	Ramp Speed Persistence	Auto- Regressive	Model
RMSE_5	0.334	0.612	0.464	0.636
RMSE_{20}	0.289	0.284	0.319	0.523
$RMSE_{60}$	0.168	-0.203	0.113	0.254
RMSE_{120}	0.062	-0.434	0.039	0.097
MAE ₅	0.258	0.597	0.431	0.612
MAE_{20}	0.213	0.301	0.280	0.497
MAE_{60}	0.136	-0.145	0.045	0.246
MAE_{120}	0.048	-0.396	-0.064	0.096
CRPS_5		_	0.00262	0.00131
CRPS_{20}	_	—	0.00982	0.00666
CRPS_{60}		—	0.02886	0.02455
CRPS_{120}		_	0.04883	0.04675

Using Probabilistic Forecasts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Using Probabilistic Forecasts

Challenges and advantages of using Probabilistic Forecasts

- Probabilistic forecasts potentially contain large amounts of information.
- Probabilistic forecasts are potentially difficult to interpret for non-specialists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Gives a possibility to choose the appropriate probabilistic forecast for a specific application.
- Can provide the needed input for stochastic optimization/programming.

Using Probabilistic Forecasts

Challenges and advantages of using Probabilistic Forecasts

- Probabilistic forecasts potentially contain large amounts of information.
- Probabilistic forecasts are potentially difficult to interpret for non-specialists.
- Gives a possibility to choose the appropriate probabilistic forecast for a specific application.
- Can provide the needed input for stochastic optimization/programming.

Applications of Probabilistic Forecasts

- Trading energy from renewable generation with asymmetric cost structures.
- Setting reserve capacity in the electrical grid.
- Modeling consumer demand for electricity, heating, water etc.

Conclusions

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Conclusions

- We believe that we have obtained state-of-the-art methodologies for wind and solar power forecasting for operational purposes.
- The SDE formulation allows for an introducing a physical understanding, which again may improve probabilistic forecasting.
- A proper understanding of the system error allows for generating multi-horizon probabilistic forecasts.
- Using probabilistic forecasts in connection with decision making tools may alleviate issues related to introducing renewable energy generation.
- Choosing the right probabilistic forecast product is important for solving operational problems.