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Motivation



An Energy System with a Large Renewable Component

source: http://www.imm.dtu.dk/ jbjo/smartenergy.html



Wind Power in Denmark



Renewable Energy and Uncertainty

Challenges with Renewable Energy
I Wind, solar and wave energy depend on the weather system.
I The weather is inherently uncertain, implying that
I Wind, wave and solar energy is intermittent and uncertain.
I This uncertainty affects the supply and demand for energy, the

energy infrastructure and the economics of the energy system.

Overcoming the Challenges
I Understanding the uncertainty associated with renewable

energy becomes valuable.
I Input knowledge of uncertainty into decision problems.
I Solve decision problems for minimizing the issues related to

this uncertainty.
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Topics related to eSACP

Aims
I To produce probabilistic forecasts quantifying this uncertainty.
I To consider applications of such probabilistic forecasts.

Approaches
I Modeling uncertainty using:

I Stochastic differential equations
I Stochastic partial differential equations

I Applying optimization tools incorporating uncertainty:
I Stochastic Programming based on scenarios for future states)
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Probabilistic Forecasting



What is Probabilistic Forecasting
Point Forecast

I Focus on describing typical or most likely outcome.
I A single value point value for each point in time.

Probabilistic Forecast
I Describes (features of) the predictive distribution.
I Probabilistic if it makes use of probabilities in the forecast.
I Examples of probabilistic forecasts include:

I Quantile forecasts
I Prediction intervals
I Predictive densities
I Scenarios

I These options are used in some state-of-the-art tools for wind
power forecasting (WPPT) and solar power forecasting
(SolarFor)
For more information we refer to https://www.enfor.dk)
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Stochastic Differential
Equations in Forecasting



The Basic Setup
The basic stochastic differential equation formulation:

Xt = X0 +
∫ t

0
f (Xs , s)ds +

∫ t

0
g(Xs , s, )dWs ,

We use the short-hand interpretation of this integral equation:

dXt = f (Xt , t)dt + g(Xt , t)dWt

Yk = h(Xtk , tk , ek).

The predictive density, j(x , t), can be found by solving (with
g(Xt , t) =

√
2D(Xt , t)):

∂

∂t j(x , t) = − ∂

∂x [f (x , t)j(x , t)] + ∂2

∂x2 [D(x , t)j(x , t)] . (1)
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Example: A Probabilistic
Model for Wind Power



The Data

I The Klim Fjordholme wind farm with a rated capacity of 21
MW.

I Hourly measurements for three years.
I Numerical weather predictions from Danish Meteorological

Institute, updated every 6 hours.



A SDE Model

Wind dynamics given by:

dXt =
((

1− e−Xt
)

(ρx ṗt + Rt) + θx (ptµx − Xt)
)

dt + σxX 0.5
t dWx ,t

dRt = −θr Rtdt + σr dWr ,t

Y1,k = Xtk + ε1,k

Wind to power dynamics given by:

dQt = (St − θqQt)dt + σqdWq,t

dSt = −θsStdt + σsdWs,t

Y2,k = (0.5 + 0.5 tanh(5(Xtk − γ1))) (0.5− 0.5 tanh(γ2(Xtk − γ3)))
ζ3

1 + e−ζ1(Xtk −ζ2+Qtk ) + ε2,k
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Power Curve
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Multi-Horizon Probabilistic Forecasts

Predictive density of production in percent out of rated power for
the Klim wind farm:



Model Performance 1-step-ahead

Model performance on 1-hour ahead predictions on test set:

Test Set

Models Parameters MAE RMSE CRPS

Climatology - 0.2208 0.2693 0.1417
Persistence 1 0.0509 0.0835 0.0428
AR 4 0.0527 0.0820 0.0417
ARX 5 0.0510 0.0795 0.0406
ARX - TN 7 0.0648 0.0848 0.0444
ARX - GARCH 9 0.0505 0.0797 0.0382
ARX - GARCH - TN 11 0.0575 0.0823 0.0401
Model 19 0.0471 0.0773 0.0327



Model Performance on Multiple Horizons

Model multi-horizons predictions performance on test set:

Models CRPS for different horizons Energy Score

1 hour 4 hours 12 hours 24 hours

ARX - GARCH 0.0382 0.0704 0.0787 0.0789 1.180
ARX - GARCH - TN
- iterative

0.0401 0.0783 0.1043 0.1225 1.945

Model 0.0327 0.0641 0.0779 0.0836 0.739



Example: A Spatio-Temporal
Forecast Model for Solar Power



The Data

I A solar power plant with a nominal output of 151 MW.
I Measurements of 91 inverters every second for one year.
I We consider a cutout of 5 by 14 inverters for modeling.



Motivation

Challenges
I A high dimensional problem, with 70 inverters and forecast

horizon of two miutes.
I Classical methods are have a large high dimensional parameter

space.
I As a result typically a large computational burden.

Approach
I A model that incorporates the physics of the system.
I Good local models should lead to good global models.
I A physical understanding of the system leads to fewer

parameters and lowered computational burden.
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The Framework

We propose a model of the form:

dUi ,j,t = f (Ui ,j,t , t) dt + g(Ui ,j,t , t)dWi ,j,t (2)
Yl ,k = h(Utk , tk) + εl ,k , (3)

where Ui ,j,t = {Ui ,j,t ,Ui−1,j,t ,Ui+1,j,t ,Ui ,j−1,t ,Ui ,j+1,t}.

Ui,j,t
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SPDE Model

Stochastic Partial Differential Equation
I Normalize the parameters with the spatial distance in

appropriate way.
I Parameters become grid-invariant.
I Can be interpreted as a stochastic partial differential equation.

The dynamical model interpretation:

dU(x , t) = v̄θ∇U(x , t)dt + σdW (x , t),

with the deterministic part dU(x , t) = v̄θ∇U(x , t)dt being a
uni-directional wave equation.
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Parameters

End up with a model with 4 parameters and the accompanying
estimates:

θ̂ µ̂ σ̂ σ̂ε

0.0631 0.703 0.00865 10−10



Predicting Spatio-Temporal Power Output

Power production in percent out of rated power.



Model Performance:
Model compared to benchmarks.

Cloud Speed Ramp Speed Auto- Model
Score Persistence Persistence Regressive

RMSE5 0.334 0.612 0.464 0.636
RMSE20 0.289 0.284 0.319 0.523
RMSE60 0.168 -0.203 0.113 0.254
RMSE120 0.062 -0.434 0.039 0.097

MAE5 0.258 0.597 0.431 0.612
MAE20 0.213 0.301 0.280 0.497
MAE60 0.136 -0.145 0.045 0.246
MAE120 0.048 -0.396 -0.064 0.096

CRPS5 − − 0.00262 0.00131
CRPS20 − − 0.00982 0.00666
CRPS60 − − 0.02886 0.02455
CRPS120 − − 0.04883 0.04675



Using Probabilistic Forecasts



Using Probabilistic Forecasts
Challenges and advantages of using Probabilistic Forecasts

I Probabilistic forecasts potentially contain large amounts of
information.

I Probabilistic forecasts are potentially difficult to interpret for
non-specialists.

I Gives a possibility to choose the appropriate probabilistic
forecast for a specific application.

I Can provide the needed input for stochastic
optimization/programming.

Applications of Probabilistic Forecasts
I Trading energy from renewable generation with asymmetric

cost structures.
I Setting reserve capacity in the electrical grid.
I Modeling consumer demand for electricity, heating, water etc.

.
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Conclusions



Conclusions

I We believe that we have obtained state-of-the-art
methodologies for wind and solar power forecasting for
operational purposes.

I The SDE formulation allows for an introducing a physical
understanding, which again may improve probabilistic
forecasting.

I A proper understanding of the system error allows for
generating multi-horizon probabilistic forecasts.

I Using probabilistic forecasts in connection with decision
making tools may alleviate issues related to introducing
renewable energy generation.

I Choosing the right probabilistic forecast product is important
for solving operational problems.
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