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Outline

| shall focus on Wind - and briefly mention Solar:
Status in Denmark
Wind power point forecasting
Use of several providers of MET forecasts
Uncertainty and confidence intervals
Scenario forecasting
Space-time scenario forecasting
Use of stochastic differential equations
Examples on the use of probabilié‘fr(j forecasts
Optimal bidding for a wind farm own;? —

Solar power forecasting

Lessons learned in Denmark
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Wind Power Statistics for Denmark

25 S wind anergy (West Densnark January 2008)
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In the winter 20013-14 more than 55 petof electricity
load was covered by wand power .

For zeveral daysthe wind power produdion was more
than 120 pdt ofthe powver load.

In 2014 more that 40 pat ofthe electricity load was
coverad by wind power.
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Power Grid. A snap-shot from 14. February

Jutland - Sweden Power right now
Exports: 728 MW Measured in MW:

. oo . Central power stations 1.575

% = i Local CHP plants 401
-

5 = ' Wind turbines 4.088

Solar cells 113
Net exchange eksport 1.845

Electricity consumption 4.331

CO2 emissions 179 g/kwWh
v

LEGEND v

Zealand - Sweden
Exports: 1.048 MW

Jutland - MNorway

Exports: 9

——

Bornholm - Sweden
Exports: 2 MW

The Great Belt
=== 5O MWK

Zealand - German
Jutland - Germany Y

) Imports: 601 MW
Imports: 284 MW P
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Wind Power Forecasting - History

Our methods for probabilistic wind power forecasting hagerbimplemented in the
Anemos Wind Power Prediction SystemAustralian Wind Energy Forecasting Systems
(AWEFS) andWPPT

The methods have been continuously developed since 1993Haboration with
Energinet.dk,
Dong Energy,
Vattenfall,
Risg — DTU Wind,
The ANEMOS projects partners/consortium (since 2002),
Overspeed GmbH (Anemos: www.overspeed.de/gb/produktepawer.html)
ENFOR (WPPT: www.enfor.dk)

Used operationally for predicting wind ber In [5enmarkcsh’1996

Now used by all major players in DenmarkL(Energlnet dk, DON&tenfall, ..)
Anemos/WPPT is now used eg in Europe, Australla anaeNortleraa.

Often used as forecast engine embedded in other systems.

i
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Prediction of wind power

In areas with high penetration of wind power such as the Wegtart of Denmark and the
Northern part of Germany and Spain, reliable wind power igtexhs are needed in order to
ensure safe and economic operation of the power system.

Accurate wind power predictions are needed with differeatition horizons in order to
ensure

(up to a few hours) efficient and safe use of regulation power (spinning resesnd
the transmission system,

(12 to 36 hourg efficient trading on the Nordic power exchange, NordPool,
(days) optimal operation of eg. large CHP plants.

Predictions of wind power are needed both for the total supma as well as on a regional
scale and for single wind farms.

For some grids/in some situations the focus is onymethodsfop forecasting, in some

other cases the focus in on reliable probabilistic @ré_qgst

r b .
»
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Uncertainty and adaptivity

Errors in MET forecasts will end up in errors in wind powerdoasts, but other factors lead
to a need for adaptation which however leads to some unogesi

The total system consisting of wind farms measured onlimeg\wirbines not measured
online and meteorological forecasts will inevitably chamyer time as:

the population of wind turbines changes,

changes in unmodelled or insufficiently modelled charasties (important
examples: roughness and dirty blades),

changes in the NWP models.

A wind power prediction system must be able to handle these-tiariations in model and
system. An adequate forecasting system mayadsgtive and recursive model estimation
to handle these issues.

We started (some 20 years ago) assuming Ga\u_slsianity; bus thivery serious (wrong)
assumption !

e .
Following the initial installation the software tool willéomatically calibrate the models to
the actual situation.
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The power curve model

The wind turbine “power curve” model,
p™" = f(w™") is extended to a wind farm HO - Estimated power curve

model, p*/ = f(w™?,0"7), by introducing - k
wind direction dependency. By introducing a

representative area wind speed and direction it
can be further extended to cover all turbines in
an entire regionp®” = f(w", 6°").

The power curve model is defined as:

Peirjt = [ Wesr|t, ét—|—k:|t7 k)

where
Wy ¢ IS forecasted wind speed, and

0: . x: is forecasted wind direction. '\-1

-
The characteristics of the NWP change witlPlots of the ﬂ_s‘tlmat_ed power curve for
the prediction horizon. the Hollandsbjerg wind farm.
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Fluctuations of offshore wind power

Fluctuations at large offshore wind farms have a significapact on the control and
management strategies of their power output

Focus is given to the minute scale. Thus, the effects retatédue turbulent nature of
the wind are smoothed out

When looking at time-series of power production at Horns E80MW/209MW)
and Nysted (165 MW), one observes successive periods watuéltions of larger
and smaller magnitude

We aim at building models " wm
based on historical wind power  =,| w
measures only... 2 50
... but able to reproduce this E
observed behavior

this calls forregime-switching
models

1 1 1 1 1
04.08 06.08 08.08 10.08 12.08 14.08
time
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Results - Horns Rev

The evaluation set is
divided in 19 different
periods of different
lengths and
characteristics

MSAR models
generally outperform
the others

In the RADAR@sea
project the regime shift
is linked to convective
rain events — which are
detected by a weather
radar.
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Spatio-temporal forecasting

Predictive improvement (measured in
RMSE) of forecasts errors by adding the
spatio-temperal module in WPPT.

= 23 months (2006-2007)
15 onshore groups
Focus here on 1-hour forecast only

Larger improvements for eastern part
of the region

Needed for reliable ramp forecasting.

The EU project NORSEWIND will
extend the region

=
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Combined forecasting

The example show results achieved for the
Tung Knob wind farms using combinations
of up to 3 power forecasts.

A number of power forecasts are
weighted together to form a new
Improved power forecast.

7500

hir02.loc C.all
mmb5.24.loc C.hir02.loc.AND.mm5.24.loc

These could come from parallel
configurations of WPPT using NWP
Inputs fromdifferent MET

providers or they could come from
other power prediction providers.

In addition to the improved perfor-

7000

6500

RMS (MW)

6000

5500

N

mance also the robustness of the sys- | S~ ‘
tem is increased. ° 10 & i
Hours since 00Z
DMl J——(WPPT) Typically an improvement on 10-15 pct

| In accuracy of the point prediction is
(DWD_)——(WPPT)—={Comb)—=( Final] §eé by including more than one MET

or more MET providers
ffice)——»
|mp|y mforma%ormbout uncertainty
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Uncertainty estimation

In many applications it is crucial that a pre-
diction tool delivers reliable estimates (prob-
abilistc forecasts) of the expected uncertainty
of the wind power prediction.

We consider the following methods for esti-
mating the uncertainty of the forecasted wind
power production:

Ensemble based - but corrected -
guantiles.

Quantile regression.
Stochastic differential equations.

The plots show raw (top) and corrected (bot-
tom) uncertainty intervales based on ECMEF
ensembles for Tung Knob (offshore park),
29/6, 8/10, 10/10 (2003). Shown are the
25%, 50%, 75%, quantiles.

i
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Quantile regression

A (additive) model for each quantile:
Q(7) = af7) + fi(w1;7) + faw2;7) + ..+ folzp; T)

Q(7) Quantile offorecast error from anexisting system
T Variables which influence the quantiles, e.g. the wind direction.
a(T) Intercept to be estimated from data.

fi(-;7) Functions to be estimated from data.

Notes on quantile regression:

Parameter estimates found by mmnﬁgmg a dedicated function of the
prediction errors. -

The variation of the uncertainty is (partly) explained by the independent
variables.

i
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Quantile regression - An example

Effect of variables (- the functions are approximated by Spline basis
functions):

1000 2000

25% (blue) and 75% (red) quantiles
0
| |
|
&
|
25% (blue) and 75% (red) quantiles
0
| |
|
|
|
|
|
|
|

1000 2000
1000 2000

-2000
|

25% (blue) and 75% (red) quantiles
0
| |
g

. N
Forecasted power has a large |nfluehgeﬂ‘

-2000
]
-2000
|

pow.fc horizon wd10m

The effect of horizon is of less importance.

Some increased uncertainty for Westerly winds.

i
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Example: Probabillistic forecasts

100
90
80
90%
20 [ 80%
= [ 70%
& 60 B 60%
o
S, 50 B 40%
S 40 . 20%
o
30 — pred.
—5— meas.
20
10
0 |

| | |
5 10 15 20 25 30 35 40 45
look—ahead time [hours]

™ Notice how the confidence intervals var .
W But the correlation in forecasts errors is not describedso
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Correlation structure of forecast errors

= Itis important to model thenterdependence structureof the prediction errors.
“ An example of interdependence covariance matrix:

horizon[h]

5 10 15 20 25 30 35 40
horizon [h]

=
—
=

i
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Correct (top) and naive (bottom) scenarios

=
—
=

i

% of installed capacity

% of installed capacity

0 20 40 60 80 100

0 20 40 60 80 100

Bl100% [ 90% []180% []70% [ ]60% [ ]50% [ ]40% [ ]30% [ _]20% [ | 10%

o 24 48 72 96 120 144 hours
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Use of Stoch. Diff. Equations

The state equation describes the future wind power proatucti

dLEt = — Q(’U,t) . (CBt —ﬁt|0)dt—|—

2\/9(ut)oz(ut)ﬁt|0(1 — Pi)0) Tt - (1 — x¢)dwy,
with a(u¢) € (0, 1), and the observation equation
yh :xth|0 —|_ €h7

whereh € {1,2,...,48}, tn = k, en ~ N(0, s*), zo = “observed power at t=0} and
Pio point forecast byWPPT (Wind Power Prediction Tool)

L\»\
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-
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Examples of using SDEs

Power

Obs. © ﬁtlo

|

0

12 24 36 48

1.0

| |
May 5. 2003, 18h

| | |
October 22. 2002, 00h

09%00%, o

Use of SDESs provides a possibility for a joint descriptiorboth non-symmetrical
conditional densities as well as the interdependence dbtiegeasts.
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SDE approach — Correlation structures

12 24 36 48

] ] ] |
October 22. 2002, 00h | o

1.0

— 36

— 24

— 12 - 0.6

Time

- 0.4

- 0.2

0.0

12 24 36 48
Time

Use of SDESs provides a possibility to model eg. time varyind wind power dependent
correlation structures. |
SDEs provide a perfect framework foombined wi ower forecasting

Today bothAnemos Wind Power Prediction SystenandWPPT provide operations

forecasts of both wind and solar power production (used legver Australia)

i
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Motivation - Space-Time Dependencies

80 100

60

power [% Pn]

20 40

0

horizon [hours]

This is not enough...

Leck Fle H:Skjll_Jr'-_;_]
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Space-Time Correlations
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Space-time trajectories
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power [% Pn]
20 40 60 80 100

0

power [% Pn]
20 40 60 80 100

0

90% e Scenario 1
80% e Scenario 2
70% ——- Scenario 3
60% -=-— Scenario 4
50% Scenario 5

920% e Scenario 1
80% e Scenario 2
70% ——- Scenario 3
60% -—-— Scenario 4
50% Scenario 5

horizon [hours]

no space-time correlation

power [% Pn]
20 40 60 80 100

power [% Pn]
20 40 60 80 100

------ Scenario
<<<<< Scenario
——- Scenario
-=-= Scenario
Scenario

abrownNnPE

0

horizon [hours]

------ Scenario
‘‘‘‘‘ Scenario
——- Scenario
-—-— Scenario
Scenario

abhwnN e

appropriate space-time correli
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Precision matrix

Zone 15
Zone 14
Zone 13
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rence complexity is re-
duced fromO(n?) to the range
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Parametrization of the precision matrix

Spatial neighbourhood

Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone
Zone

Zone

15

14 -

13

12

11

Zone 1+ °

Zone 2 -

Zone 3 -

Zone 4

Zone 5 -

Zone 6 -

Zone 7

Zone 8 -

Zone 9 -

Zone 10 -

Zone 11

Zone 12 -

Zone 13

Zone 14 -

Zone 15 -
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Parametrization of the precision matrix

Temporal neighbourhood

43: 43:
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Type of forecasts required

Point forecasts (normal forecasts)a single value for each time point in the future.
Sometimes with simple error bands.

Probabilistic or quantile forecasts the full conditional distribution for each time
point in the future.

Scenarios probabilistic correct scenarios of the future wind powerduction.

uL\_ -

-

i
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Value of knowing the uncertainties

Case study: A 15 MW wind farm in the Dutch electricity mark®ices and
measurements from the entire year 2002.

From a phd thesis by Pierre Pinson (2006).
The costs are due to the imbalance penalties on the regulatoket.

Value of an advanced method for point forecastihige regulation costs are
diminished by nearly 38 pct.compared to the costs of using the persistance
forecasts.

Added value of reliable uncertaintieA:further decrease of regulation costs — up to
39 pct.

v
Lr'—“\_ 2

-

i
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Wind power — asymmetrical penalties

The revenue from trading a specific hour on NordPool can beeegpd as

Pp x (Actual— Bid) if Actual > Bid

Ps x Bid . . .
o i { Py x (Actual— Bid) if Actual < Bid

Ps is the spot price ané’p/ Py is the down/up reg. price.
The bid maximising the expected revenue is the follongagntile

E|Ps| — E|Pp]
E|Py] — E[Pp]

In the conditional distribution of the future wind power drtion.

.
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Wind power — asymmetrical penalties

It is difficult to know the regulation prices at the day aheaxkl — research into
forecasting is ongoing.

The expression for the quantile is concerned with expeciégeg of the prices — just
getting these somewhat right will increase the revenue.

A simple tracking ofC'p andCy is a starting point.

The bids maximizing the revenue during the period September 200to March
2010:

Quantile

—— Monthly averages — !'Operational tracking

00 04 0.8

| | | | |
2009-09-01 2009-11-01 L%G{Qj%—_Ol 2010-03-01

i
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Sizing of Energy Storage

Correct

o
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Solar Power Forecasting

Same principles as for wind power ....
Developed for grid connected PV-systems mainly installedooftops
Average of output from 21 PV systems in small village (Braagstin DK
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Method
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@ Based on readings from the systems and weather forecasts

“ Two-step method

@ Step One: Transformation to atmospheric transmittanagh statistical clear sky
model (see below). Step Two: A dynamic model (see paper).

2000

1500
1000

500

60000

40000

tod [seconds]

20000

day Jon
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Example of hourly forecasts

1000 2000
|
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Software Modules for Wind Power Forecasting

Point prediction module

Probabilistic (quantile) forecasting module
Scenario generation module

Spatio-temporal forecasting module

Space-time scenario generation module
Even-based prediction module (eg. cut-off prob.)
Ramp prediction module

Same modules are available for solar Power Forecasting
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DSF Centre for IT-Intelligent Energy Systems
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VG-Integration: Lessons Learned in Denmark

(> 5 pct wind): Tools for Wind/Solar Power forecasting argortant

(> 10 pct wind): Tools for reliable probabilistic forecasgiare needed
(> 15 pct wind): Consider Energy Systems Integration (natétalone)
(> 20 pct wind): Consider Methods for Demand Side Management

(> 25 pct wind): New methods for finding the optimal spinniege&rve are needed
(based on prob. forecasting of wind/solar power produgtion

Joint forecasts of wind, solar, load and prices are esdentia

Limited need - or no need - for classical storage solutions

Huge need for virtual storage solutions

Intelligent interaction between power, gas, DH and bionvasg important

ICT and use of data, adaptivity, intelligence, and stocbasodelling is very
important

&/
The largest national strategic research proj%tr&qu;l'-lntelligent Energy Systems in
Cities - CITIES have been launched 1. January 2014 s

i
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Wind Power Forecasting - Lessons Learned

The forecasting models must bdaptive (in order to taken changes of dust on
blades, changes roughness, etc., into account).

Reliable estimates of tHerecast accuracyis very important (check the reliability by
eg. reliability diagrams).
Reliable probabilistic forecasts are important to gainfthieeconomical value

Usemore than a single MET provider for delivering the input to the prediction tool
— this improves the accuracy of wind power forecasts witil 2@ct.

Estimates of theorrelation in forecasts errorsimportant.

Forecasts ofcross dependenciédetween load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cos$ functions.

Probabilistic forecasts can providaswersfor questions like
What is the probability that a giver@ﬁ;age IS large enowghhfe next 5 hours?

What is the probability of an increasefin wind power producinf more that 50
: I SR |
pct of installed power over the next two hours?% .

What is the probability of a down-regulation due to wind powe more than x
GW within the next 4 hours.

—The same conclusions hold for our tools &w. solar power forecasting
- ISU Talk on Probabilistic Forecasting, March 2015 — p. 39
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