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Outline

Focus on Wind Power - and briefly mention Solar Power:

Status in Denmark

Wind power point forecasting

Use of several providers of MET forecasts

Uncertainty and confidence intervals

Scenario forecasting

Space-time scenario forecasting

Use of stochastic differential equations

Examples on the use of probabilistic forecasts

Optimal bidding for a wind farm owner

Solar power forecasting

Some advanced topics

Lessons learned in Denmark
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Wind Power Statistics for Denmark
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Power Grid. A snap-shot from 14. February
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Smart-Energy OS
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Stochastic Control and Optimization
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Direct vs Indirect Control
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Forecast Requirements
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Wind Power Forecasting - History

Our methods for probabilistic wind power forecasting have been implemented in the
Anemos Wind Power Prediction System, Australian Wind Energy Forecasting Systems
(AWEFS) andWPPT

The methods have been continuously developed since 1993 - incollaboration with
Energinet.dk,
Dong Energy,
Vattenfall,
Risø – DTU Wind,
The ANEMOS projects partners/consortium (since 2002),
Overspeed GmbH (Anemos: www.overspeed.de/gb/produkte/windpower.html)
ENFOR (WPPT: www.enfor.dk)

Used operationally for predicting wind power in Denmark since 1996.

Now used by all major players in Denmark (Energinet.dk, DONG, Vattenfall, ..)

Anemos/WPPT is now used eg in Europe, Australia, and North America.

Often used as forecast engine embedded in other systems.
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Prediction of wind power

In areas with high penetration of wind power such as the Western part of Denmark and the
Northern part of Germany and Spain, reliable wind power predictions are needed in order to
ensure safe and economic operation of the power system.

Accurate wind power predictions are needed with different prediction horizons in order to
ensure

(up to a few hours) efficient and safe use of regulation power (spinning reserve) and
the transmission system,

(12 to 36 hours) efficient trading on the Nordic power exchange, NordPool,

(days) optimal operation of eg. large CHP plants.

Predictions of wind power are needed both for the total supply area as well as on a regional
scale and for single wind farms.

For some grids/in some situations the focus is on methods forramp forecasting, in some
other cases the focus in on reliable probabilistic forecasting.
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Uncertainty and adaptivity

Errors in MET forecasts will end up in errors in wind power forecasts, but other factors lead
to a need for adaptation which however leads to some uncertainties.

The total system consisting of wind farms measured online, wind turbines not measured
online and meteorological forecasts will inevitably change over time as:

the population of wind turbines changes,

changes in unmodelled or insufficiently modelled characteristics (important
examples: roughness and dirty blades),

changes in the NWP models.

A wind power prediction system must be able to handle these time-variations in model and
system. An adequate forecasting system may useadaptive and recursive model estimation
to handle these issues.

We started (some 20 years ago) assuming Gaussianity; but this is a very serious (wrong)
assumption !

Following the initial installation the software tool will automatically calibrate the models to
the actual situation.
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The power curve model

The wind turbine “power curve” model,
ptur = f(wtur) is extended to a wind farm
model, pwf = f(wwf , θwf ), by introducing
wind direction dependency. By introducing a
representative area wind speed and direction it
can be further extended to cover all turbines in
an entire region,par = f(w̄ar, θ̄ar).

The power curve model is defined as:

p̂t+k|t = f( w̄t+k|t, θ̄t+k|t, k )

where
w̄t+k|t is forecasted wind speed, and
θ̄t+k|t is forecasted wind direction.

The characteristics of the NWP change with
the prediction horizon.
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Plots of the estimated power curve for
the Hollandsbjerg wind farm.
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The dynamical prediction model

The power curve models are used as input for an adaptively estimateddynamical model,
which (as asimple example) leads to the following k-stop ahead forecasts:

p̂t+k|t = a1pt + a2pt−1 + b p̂
pc
t+k|t +

3
∑

i=1

[cci cos
2iπh24

t+k

24
+ c

s
i sin

2iπh24
t+k

24
] +m+ et+k

wherept is observed power production,k ∈ [1; 48] (hours) is prediction horizon,̂ppct+k|t is

power curve prediction andh24
t+k is time of day.

Model features include

the number of terms in the model depends on the prediction horizon,

non-stationarity is handled by adaptive estimation of the model parameters,
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A model for upscaling

The dynamic upscaling model for a region is defined as:

p̂
reg
t+k|t = f( w̄ar

t+k|t, θ̄
ar
t+k|t, k ) p̂loct+k|t

where
p̂loct+k|t is a local (dynamic) power prediction within the region,
w̄ar

t+k|t is forecasted regional wind speed, and

θ̄art+k|t is forecasted regional wind direction.

The characteristics of the NWP andp̂loc change with the prediction horizon. Hence the
dependendency of prediction horizonk in the model.
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Configuration Example

This configuration of Anemos Prediction
System/WPPT is used by a large TSO.
Characteristics for the installation:

A large number of wind farms and
stand-alone wind turbines.

Frequent changes in the wind
turbine population.

Offline production data with a
resolution of 15 min. is available
for more than 99% of the wind
turbines in the area.

Online data for a large number
of wind farms are available. The
number of online wind farms in-
creases quite frequently.

Model
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prediction
Total prod.

Dynamic

Power Curve
Model

Model

Offline prod.
data

prediction
Area prod.

NWP data

Online prod.
data

prediction
Online prod.
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Fluctuations of offshore wind power

Fluctuations at large offshore wind farms have a significantimpact on the control and
management strategies of their power output

Focus is given to the minute scale. Thus, the effects relatedto the turbulent nature of
the wind are smoothed out

When looking at time-series of power production at Horns Rev(160MW/209MW)
and Nysted (165 MW), one observes successive periods with fluctuations of larger
and smaller magnitude

We aim at building models

based on historical wind power
measures only...
... but able to reproduce this
observed behavior

this calls forregime-switching
models
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Results - Horns Rev

The evaluation set is

divided in 19 different

periods of different

lengths and

characteristics

MSAR models

generally outperform

the others

In the RADAR@sea

project the regime shift

is linked to convective

rain events – which are

detected by a weather

radar.
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Spatio-temporal forecasting

Predictive improvement (measured in
RMSE) of forecasts errors by adding the
spatio-temperal module in WPPT.

23 months (2006-2007)

15 onshore groups

Focus here on 1-hour forecast only

Larger improvements for eastern part
of the region

Needed for reliable ramp forecasting.

The EU project NORSEWinD will
extend the region
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Combined forecasting

A number of power forecasts are
weighted together to form a new
improved power forecast.

These could come from parallel
configurations of WPPT using NWP
inputs fromdifferent MET
providers or they could come from
other power prediction providers.

In addition to the improved perfor-
mance also the robustness of the sys-
tem is increased.

Met Office
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DMI

WPPT

WPPT

WPPT

Comb Final

The example show results achieved for the
Tunø Knob wind farms using combinations
of up to 3 power forecasts.
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Typically an improvement on 10-15 pct
in accuracy of the point prediction is
seen by including more than one MET
provider. Two or more MET providers
imply information about uncertainty
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Uncertainty estimation

In many applications it is crucial that a pre-
diction tool delivers reliable estimates (prob-
abilistc forecasts) of the expected uncertainty
of the wind power prediction.

We consider the following methods for esti-
mating the uncertainty of the forecasted wind
power production:

Ensemble based - but corrected -
quantiles.

Quantile regression.

Stochastic differential equations.

The plots show raw (top) and corrected (bot-
tom) uncertainty intervales based on ECMEF
ensembles for Tunø Knob (offshore park),
29/6, 8/10, 10/10 (2003). Shown are the
25%, 50%, 75%, quantiles.

Tunø Knob: Nord Pool horizons (init. 29/06/2003 12:00 (GMT), first 12h not in plan)
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Quantile regression

A (additive) model for each quantile:

Q(τ) = α(τ) + f1(x1; τ) + f2(x2; τ) + . . .+ fp(xp; τ)

Q(τ) Quantile offorecast error from anexisting system.

xj Variables which influence the quantiles, e.g. the wind direction.

α(τ) Intercept to be estimated from data.

fj(·; τ) Functions to be estimated from data.

Notes on quantile regression:

Parameter estimates found by minimizing a dedicated function of the

prediction errors.

The variation of the uncertainty is (partly) explained by the independent

variables.
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Quantile regression - An example

Effect of variables (- the functions are approximated by Spline basis

functions):
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Forecasted power has a large influence.

The effect of horizon is of less importance.

Some increased uncertainty for Westerly winds.
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Example: Probabilistic forecasts
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Notice how the confidence intervals varies ...

But the correlation in forecasts errors is not described so far.
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Correlation structure of forecast errors

It is important to model theinterdependence structureof the prediction errors.

An example of interdependence covariance matrix:
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Correct (top) and naive (bottom) scenarios
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Use of Stoch. Diff. Equations

The state equation describes the future wind power production

dxt =− θ(ut) · (xt − p̂t|0)dt+

2
√

θ(ut)α(ut)p̂t|0(1− p̂t|0)xt · (1− xt)dwt,

with α(ut) ∈ (0, 1), and the observation equation

yh =xth|0 + eh,

whereh ∈ {1, 2, ..., 48}, th = k, eh ∼ N(0, s2), x0 = “observed power at t=0”, and

p̂t|0 point forecast byWPPT (Wind Power Prediction Tool)

ut input vector (heret andp̂t|0)
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Examples of using SDEs

Time

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

0 12 24 36 48

April 22. 2001, 12h May 19. 2001, 12h

May 5. 2003, 18h

0 12 24 36 48

0.0

0.2

0.4

0.6

0.8

1.0
October 22. 2002, 00h

0.0

0.2

0.4

0.6

0.8

1.0

Obs. p̂t|0 p̂SDE

Use of SDEs provides a possibility for a joint description ofboth non-symmetrical
conditional densities as well as the interdependence of theforecasts.
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SDE approach – Correlation structures
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Use of SDEs provides a possibility to model eg. time varying and wind power dependent
correlation structures.
SDEs provide a perfect framework forcombined wind and solar power forecasting.
Today bothAnemos Wind Power Prediction SystemandWPPT provide operations
forecasts of both wind and solar power production (used eg. all over Australia)
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Motivation - Space-Time Dependencies
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This is not enough...
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Space-Time Correlations
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Space-time trajectories
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Precision matrix

Sample
precision matrix,Q = Σ−1. <1->Inference complexity is re-

duced fromO(n3) to the range

O(n) - O(n3/2).
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Parametrization of the precision matrix

Spatial neighbourhood
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Parametrization of the precision matrix

Temporal neighbourhood

W A S

Zoomed in blocks of the standardized (by its diagonal) sample precision matrix
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Type of forecasts required

Point forecasts (normal forecasts); a single value for each time point in the future.
Sometimes with simple error bands.

Probabilistic or quantile forecasts; the full conditional distribution for each time
point in the future.

Scenarios; probabilistic correct scenarios of the future wind power production.
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Value of knowing the uncertainties

Case study: A 15 MW wind farm in the Dutch electricity market,prices and
measurements from the entire year 2002.

From a phd thesis by Pierre Pinson (2006).

The costs are due to the imbalance penalties on the regulation market.

Value of an advanced method for point forecasting:The regulation costs are
diminished by nearly 38 pct.compared to the costs of using the persistance
forecasts.

Added value of reliable uncertainties:A further decrease of regulation costs – up to
39 pct.
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Wind power – asymmetrical penalties

The revenue from trading a specific hour on NordPool can be expressed as

PS × Bid +

{

PD × (Actual− Bid) if Actual > Bid
PU × (Actual− Bid) if Actual < Bid

PS is the spot price andPD/PU is the down/up reg. price.

The bid maximising the expected revenue is the followingquantile

E[PS ]− E[PD]

E[PU ]− E[PD]

in the conditional distribution of the future wind power production.
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Wind power – asymmetrical penalties

It is difficult to know the regulation prices at the day ahead level – research into
forecasting is ongoing.

The expression for the quantile is concerned with expected values of the prices – just
getting these somewhat right will increase the revenue.

A simple tracking ofCD andCU is a starting point.

The bids maximizing the revenue during the period September 2009 to March
2010:
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Sizing of Energy Storage
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(Illustrative example based on 50 day ahead scenarios. Usedfor calculating the risk for a storage to be too
small)
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Wind Power Forecasting Installations
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Solar Power Forecasting

Same principles as for wind power ....

Developed for grid connected PV-systems mainly installed on rooftops

Average of output from 21 PV systems in small village (Brædstrup) in DK
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Method

Based on readings from the systems and weather forecasts

Two-step method

Step One: Transformation to atmospheric transmittanceτ with statistical clear sky
model (see below). Step Two: A dynamic model (see paper).
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Example of hourly forecasts
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Some Advanced Topics
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Spatio-Temp. solar power forecasting in Japan
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Forecasting for a large Solar Power Plant
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Forecasting for a large Solar Power Plant
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Forecasting for a large Solar Power Plant
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Software Modules for Wind Power Forecasting

Point prediction module

Probabilistic (quantile) forecasting module

Scenario generation module

Spatio-temporal forecasting module

Space-time scenario generation module

Even-based prediction module (eg. cut-off prob.)

Ramp prediction module

Same modules are available for solar Power Forecasting
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VG-Integration: Lessons Learned in Denmark

(> 5 pct wind): Tools for Wind/Solar Power forecasting are important

(> 10 pct wind): Tools for reliable probabilistic forecasting are needed

(> 15 pct wind): Consider Energy Systems Integration (not Power alone)

(> 20 pct wind): Consider Methods for Demand Side Management

(> 25 pct wind): New methods for finding the optimal spinning reserve are needed
(based on prob. forecasting of wind/solar power production)

Joint forecasts of wind, solar, load and prices are essential

Limited need - or no need - for classical storage solutions

Huge need for virtual storage solutions

Intelligent interaction between power, gas, DH and biomassvery important

ICT and use of data, adaptivity, intelligence, and stochastic modelling is very
important

The largest national strategic research project:Centre for IT-Intelligent Energy Systems in
Cities - CITIES have been launched 1. January 2014.
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Wind Power Forecasting - Lessons Learned

The forecasting models must beadaptive (in order to taken changes of dust on
blades, changes roughness, etc., into account).

Reliable estimates of theforecast accuracyis very important (check the reliability by
eg. reliability diagrams).

Reliable probabilistic forecasts are important to gain thefull economical value.

Usemore than a single MET provider for delivering the input to the prediction tool
– this improves the accuracy of wind power forecasts with 10-15 pct.

Estimates of thecorrelation in forecasts errors important.

Forecasts of ’cross dependencies’ between load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cost functions.

Probabilistic forecasts can provideanswersfor questions like
What is the probability that a given storage is large enough for the next 5 hours?
What is the probability of an increase in wind power production of more that 50
pct of installed power over the next two hours?
What is the probability of a down-regulation due to wind power on more than x
GW within the next 4 hours.

The same conclusions hold for our tools foreg. solar power forecasting.
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