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Thermal Flexibility in Buildings and Districts
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Existing Markets - Challenges

Dynamics
Stochasticity
Nonlinearities

¢ ¢ ¢ ¢

Many power related services (voltage, frequency, balancing, spinning
reserve, congestion, ...)

Speed / problem size

¢

Characterization of flexibility

¢

® Requirements on user installations

b CITIES

Centre for IT Intelligent Energy Systems Annex 67, Lishon, A2.3+A2.4 meeting, July 2017



COMPETITIVE BIDDING AND STABILITY ANALYSIS

IN ELECTRICITY MARKETS USING CONTROL THEORY

Main idea: applying control theory to the study of power markets

Advantages in handling effectively

—

Dynamics Uncertainty
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control theory provides ways of stochastic control theory allows for
modeling the dynamics which taking into account different sources of
is intrinsic in energy markets uncertainty (wind, ...)
it is possible to develop advanced itis possible to develop bidding strategies
bidding strategies which exploit the which are optimal with respect to the
inclusion of the dynamics in the model stochastic characteristics of the market
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(Accounting information\
(energy, price/time) for
the past 5 minutes [t-
10m;t-5m]. Received at
t-4m (or later, possible

\_ batch wise) -/

(DSO)
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Price for the coming 5
minutes [t,t+5m].
Available at t-2m (?)
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(FlexPower EMS via DSO, BRP,
TSO/Nordpool)

External info., e.g.
spot prices

MET forecast

(External)
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Price-prognosis for
the time intervals:
[t+5m,t+10m],
[t+10m,t+15m)], etc.
Available at t-1m (?)

Load-prognosis for |
time-points after t, I
but in larger time
steps, e.g. [t, t+2h],
[t+2h, t+4h], [t+4h, '

t+6h], ... I
|
|
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measuring
device Hoygehold

/T\ (FlexPowg A ode)

<
I

measurement
(time scale
larger than

The blue color represent the minimal
FlexPower requirements. The green
color represents the additional
requirements when external
prognoses are used by the local
controller. Possible multiple load
forecasts may be required by the
household. Also the load prognosis
may be supplemented with additional
information required by the local
controller (assumed future Ti, UA-
value, ...).

The price submitted to the local
controller is the sum of the spot,
regulation, and nodal prices. The price
prognosis service is likely to benefit
from having access to these prices
separately.

The time index t refers to the
beginning of the next 5 minute
interval.

Secondary measurements,
e.g. indoor temperature
and reference indoor
temperature, or even local
climate measurements.
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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems at all scales.

Einens

Geographical Scale

Complexity
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Smart-Energy OS e
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Direct and Indirect Control

<l
Eatis
For DC info about individual states and constraints are needed **
Individual =
Consumption Price Consumption and Indmdual
Characteristics Set-points

O Oyqd Oy 54 O

(a) Indirect control (b) Direct control
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Control and Optimization -—
<>
Day Ahead:
. Stoch. Programming based on eg. Scenarios
Cost: Related to the market (one or two levels)

Direct Control:

Actuator: Power

Agagregator Indirect Control

(Ic) Two-way communication

ggiegated loads
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Models for DERs are needed

MET Forecasts
Local Data

Contracts are complicated

kX

i ﬁ ﬁ Indirect Control:

Cost: E-MPC at low (DER) level, One-way
communication

'I
g Constraints for the DERs (calls for state est.)

Advanced
Cortroller

In Wiley Book: Control of Electric Loads Models for DERs are not needed
in Future Electric Energy Systems, 2015 simple 'contracts'
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A market of tomorrow
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SE-OS Characteristics

i

‘Bidding - clearing - activation’ at higher levels
Nested sequence of systems - systems of systems
Hierarchy of optimization (or control) problems

Control principles at higher spatial/temporal resolutions

¢ e e ¢ ¢

Cloud or Fog (IoT, loS) based solutions - eg. for forecasting and
control

¢

Facilitates energy systems integration (power, gas, thermal, ...)
Allow for new players (specialized aggregators)
Simple setup for the communication and contracts

Provides a solution for all ancillary services

¢ e ¢ ¢

Harvest flexibility at all levels
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DTU
Models for describing flexibility ==

Data and statistical methods are used to establish
grey-box models for characterizing thermal flexible

energy systems — incl. models for the buildings
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Indirect Control

Control of HVAC System

. |
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Aggregation (over 20 houses)
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Flexibility described by
Step Response Functions

I
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Control of Power

s
-
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Model parameters
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o estimator <
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- (controller) o> consumption @ >
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Control performance

I

Considerable reduction in peak consumption
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Figure 4: Six characteristics of the demand response to a step increase in elec-
tricity price. 7: The delay from adjusting the electricity prize and seeing an
effect on the electricity demand, equal to approximately 0.5 here. A: The max-
imum change in demand following the price change, in this case close to 0.2. «:
The time it takes from the change in demand starts until it reaches the lowest
level, approximately equal to 0.5 here. 5: The total time of decreased electricity
demand, roughly equal to 2 here. A: The total amount of decreased energy de-
mand, given by the green-shaded area. B: The total amount of increased energy
demand, given by the grey-shaded area.
i
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Labelling proposal

for energy, price and emission based labelling

i

The test consists of the following steps:
1. Let A; be the price of electricity at time ¢.

2. Simulate the control of the building without considering the price, and let
u? be the electricity consumption at time f.

3. Simulate the control of the building considering the price, and let u! be
the electricity consumption at time ¢.

4. The total operation cost of the price-ignorant control is given by
0 _ N 0
C — Zt=1:| )‘.tut .

5. Similarly the operation cost of the price-aware control is given by
1 N 1

6. 1— g—; is the result of the test, giving us the fractional amount of saved
money.

This test is inspired by minimizing total costs for varying electricity prices,
but in general A; could just represent ones desire to reduce electricity demand
at time 1.

L j
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Direct Control -
or Bids for Conventional Markets

Flexibility Related to
Thermal Demand Response
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Flexibility Represented by

Saturation Curves
(for market integration using block bids)

I
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Live CO2 emissions of the European
electricity consumption

This shows in real-time where your electricity comes from and
how much CO2 was emitted to produce it.

We take into account electricity imports and exports #»
between countries.

Tip: Click on a country fo start exploring —

B wind power potential (m/s) =3

Like the visualization? We would love to hear your feedback!
Found bugs or have ideas? Report them here.

This project is Open Source: contribute on GitHub.

All data sources and model explanations can be found here.
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Characterization of Thermal Flexibility

® We need to understand future energy/power markets (also
for ancilary services)

@ For indirect control:
® Step Response Functions
® Flexibility depends on price
® Area, Slope, Tmakx, ....

® For direct control:

©® Saturation Curves
® Describes also rebound effect

® Labelling has to be discussed - a reference might be useful
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Some 'randomly picked' books on modeling ....

Trexts i Statistical Scienee

Introduction to
General and Generalized
Linear Models

Time Series
Analysis

Henrik Madsen

H'I- v b PR

egrating
Renewables in
Electricity Markets

Oiperational Froblems
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Thanks ...

For more information
www.ctsm.info
www.henrikmadsen.org
www.smart-cities-centre.org
...0r contact
— Henrik Madsen (DTU Compute)
hmad@dtu.dk
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