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Outline

| shall focus on wind power - and briefly mention solar power:
Status in Denmark
Energy-System OS
Forecasting and optimization/control
Wind power point forecasting
Use of several providers of MET forecasts
Probabilistic forecasting
Scenario forecasting
Space-time scenario forecasting k—"j
Use of stochastic differential equatiogs —
Examples on the use of probabilistic forecasts

Solar power forecasting
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Wind Power Statistics for Denmark
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In 2008 wind power did cover the entire

demand of electricity in 200 hours
(West DK)
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In 2015 more than 42 pct of electricity load was
covered by wind power.

For several days in 2015 the wind power production
was more than 120 pct of the power load.

July 10th, 2015 more than 140 pct of the power
load was covered by wind power
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Smart-Energy OS
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Stochastic Control and Optimization
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In New Wiley Book: Control of Electric Loads

in Future Electric Energy Systems, 2015

Day Ahead:

Stoch. Programming based on eg. Scenarios

Cost: Related to the market (one or two
levels)

Direct Control:

Actuator: Power

Two-way communication

Models for DERs are needed

Constraints for the DERs (calls for state est.)
Contracts are complicated

Indirect Control:

Actuator: Price

Cost: E-MPC at low (DER) level, One-way
communication

Models for DERs are not needed

Simple 'contracts'
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Direct vs Indirect Control

Level Direct Control (DC) Indirect Control (1C)
; N J ; N s
11 Millyy Y g )51 D5 (ks Uik) min; , > o @(Zk, Pr)
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Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct
control the optimization is globally solved at level I1I. Consequently the optimal control signals
u; are sent to all the ] DER units at level IV. (IC) In indirect control the optimization at level
[II computes the optimal prices p which are sent to the J-units at level IV. Hence the ] DERs

optimize their own energy consumption taking into account p as the actual price of energy.
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Forecast Requirements

Day Ahead:
50 — Forecasts of loads
Day Ahead Balancing
o] — Forecast of Grid Capacity

_ (using eg. DLR)
— Forecasts of production (eq.

Y
| | | h Wind and Solar)
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Type of Forecasts
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# Point forecasts

# Conditional mean and
covariances

@ Conditional quantiles
(Prob. forecasts)

# Conditional scenarios

# Conditional densities

@ Stochastic differential
equations

Pct. of installed capacity

Pect. of installed capacity

96 120 144 hours
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Wind Power Forecasting - History

Our methods for probabilistic wind power forecasting hagerbimplemented in the
Anemos Wind Power Prediction SystemAustralian Wind Energy Forecasting Systems
(AWEFS), WPPT, ....

The methods have been continuously developed since 1993Haboration with
Energinet.dk,
Dong Energy,
Vattenfall,
Risg — DTU Wind,
The ANEMOS projects partners/consortium (since 2002),
Overspeed GmbH (Anemos: www.overspeed.de/gb/produktepawer.html)
ENFOR (WPPT: www.enfor.dk)

Used operationally for predicting wind ber In [5enmarkcsh’1996

Now used by all major players in DenmarkL(Energlnet dk, DON&tenfall, ..)
Anemos/WPPT is now used eg in Europe, Australla anaeNortleraa.

Often used as forecast engine embedded in other systems.

i
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Uncertainty and adaptivity

The ramdom part of errors in MET forecasts will end up in esiarwind power forecasts,

but some time-varying systematic errors in MET forecastb@her factors call for adaptive
methods

The total system consisting of wind farms measured onlimed wirbines not measured
online and meteorological forecasts will inevitably chamyer time as:

the population of wind turbines changes,

changes in unmodelled or insufficiently modelled charasties (important
examples: roughness and dirty blades),

changes in the NWP models.

A wind power prediction system must be able to handle these-tiariations in model and
system. An adequate forecasting system shoulchdagtive and recursive model
estimationto handle these issues.

Following the initial installation the software to%l'/\&ilu_mmatically calibrate the models to

the actual situation. MR
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The power curve model

The wind turbine “power curve” model,
p™" = f(w™") is extended to a wind farm HO - Estimated power curve

model, p*/ = f(w™?,0"7), by introducing - k
wind direction dependency. By introducing a

representative area wind speed and direction it
can be further extended to cover all turbines in
an entire regionp®” = f(w", 6°").

The power curve model is defined as:

Peirjt = [ Wesr|t, ét—|—k:|t7 k)

where
Wy ¢ IS forecasted wind speed, and

0: . x: is forecasted wind direction. '\-1

-
The characteristics of the NWP change witlPlots of the ﬂ_s‘tlmat_ed power curve for
the prediction horizon. the Hollandsbjerg wind farm.
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Regime-switching models

The evaluation set is
divided in 19 different
periods of different
lengths and
characteristics

MSAR models
generally outperform
the others

In the RADAR@sea
project the regime shift
is linked to convective
rain events which
now are detected by a
weather radar.
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Spatio-temporal forecasting

Predictive improvement (measured in
RMSE) of forecasts errors by adding the
spatio-temperal module in WPPT.

= 23 months
" 15 onshore groups
™ Focus here on 1-hour forecast only

& Larger improvements for eastern part
of the region

™ Needed for reliable ramp forecasting. |
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Combined forecasting

The example show results achieved for the
Tung Knob wind farms using combinations
of up to 3 power forecasts.

A number of power forecasts are
weighted together to form a new
Improved power forecast.

7500

hir02.loc C.all
mmb5.24.loc C.hir02.loc.AND.mm5.24.loc

These could come from parallel
configurations of WPPT using NWP
Inputs fromdifferent MET

providers or they could come from
other power prediction providers.

In addition to the improved perfor-

7000

6500

RMS (MW)

6000

5500

N

mance also the robustness of the sys- | S~ ‘
tem is increased. ° 10 & i
Hours since 00Z
DMl J——(WPPT) Typically an improvement on 10-15 pct

| In accuracy of the point prediction is
(DWD_)——(WPPT)—={Comb)—=( Final] §eé by including more than one MET

or more MET providers
ffice)——»
|mp|y mforma%ormbout uncertainty
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Uncertainty estimation

In many applications it is crucial that a pre-
diction tool delivers reliable estimates (prob-
abilistc forecasts) of the expected uncertainty
of the wind power prediction.

We consider the following methods for esti-
mating the uncertainty of the forecasted wind
power production:

Ensemble based - but corrected -
guantiles.

Quantile regression.
Stochastic differential equations.

The plots show raw (top) and corrected (bot-
tom) uncertainty intervales based on ECMEF
ensembles for Tung Knob (offshore park),
29/6, 8/10, 10/10 (2003). Shown are the
25%, 50%, 75%, quantiles.

i
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Quantile regression

A (additive) model for each quantile:
Q(7) = af7) + fi(w1;7) + faw2;7) + ..+ folzp; T)

Q(7) Quantile offorecast error from anexisting system
T Variables which influence the quantiles, e.g. the wind direction.
a(T) Intercept to be estimated from data.

fi(-;7) Functions to be estimated from data.

Notes on quantile regression:

Parameter estimates found by mmnﬁgmg a dedicated function of the
prediction errors. -

The variation of the uncertainty is (partly) explained by the independent
variables.

i
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Example: Probabillistic forecasts

100
90
80
90%
20 [ 80%
= [ 70%
& 60 B 60%
o
S, 50 B 40%
S 40 . 20%
o
30 — pred.
—5— meas.
20
10
0 |

| | |
5 10 15 20 25 30 35 40 45
look—ahead time [hours]

™ Notice how the confidence intervals var .
W But the correlation in forecasts errors is not describedso
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Correlation structure of forecast errors

= Itis important to model thenterdependence structureof the prediction errors.
“ An example of interdependence covariance matrix:

horizon[h]

5 10 15 20 25 30 35 40
horizon [h]

=
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Correct (top) and naive (bottom) scenarios
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% of installed capacity

% of installed capacity

0 20 40 60 80 100

0 20 40 60 80 100

Bl100% [ 90% []180% []70% [ ]60% [ ]50% [ ]40% [ ]30% [ _]20% [ | 10%

(0] 24 48 72 96 120 144 hours




Use of SDEs - Simple example

The state equation describes the future wind power proatucti

dLEt = — Q(’U,t) . (CBt —ﬁﬂo)dt—f-

2\/9(ut)oz(ut)ﬁt|0(1 — Pi)0) Tt - (1 — x¢)dwy,
with a(u¢) € (0, 1), and the observation equation
yh :xth|0 —|_ €h7

whereh € {1,2,...,48}, tn = k, en ~ N(0, s*), zo = “observed power at t=0} and
Pio point forecast byWPPT (Wind Power Prediction Tool)

u input vector (here andp, o)
UL\

i
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Examples of using SDEs

Power

Obs. © ﬁtlo

|

0

12 24 36

48

1.0

| |
May 5. 2003, 18h

| | |
October 22. 2002, 00h

09%00%, o

Use of SDESs provides a possibility for a joint descriptiorboth non-symmetrical
conditional densities as well as the interdependence dbtiegeasts.
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Motivation - Space-Time Dependencies

80 100

60

power [% Pn]

20 40

0

horizon [hours]

This is not enough...

Leck Fle H:Skjll_Jr'-_;_]
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Space-Time Correlations
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Space-time trajectories
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power [% Pn]
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0

power [% Pn]
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0
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80% e Scenario 2
70% ——- Scenario 3
60% -=-— Scenario 4
50% Scenario 5

920% e Scenario 1
80% e Scenario 2
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60% -—-— Scenario 4
50% Scenario 5

horizon [hours]

no space-time correlation
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<<<<< Scenario 2
——- Scenario 3
-=-= Scenario 4
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------ Scenario
‘‘‘‘‘ Scenario
——- Scenario
-—-— Scenario
Scenario

abhwnN e

appropriate space-time correli
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Wind power — asymmetrical penalties

The revenue from trading a specific hour on NordPool can beeegpd as

Pp x (Actual— Bid) if Actual > Bid

Ps x Bid . . .
o i { Py x (Actual— Bid) if Actual < Bid

Ps is the spot price ané’p/ Py is the down/up reg. price.
The bid maximising the expected revenue is the follongagntile

E|Ps| — E|Pp]
E|Py] — E[Pp]

In the conditional distribution of the future wind power drtion.

.
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Wind power — asymmetrical penalties

It is difficult to know the regulation prices at the day aheaxkl — research into
forecasting is ongoing.

The expression for the quantile is concerned with expeciégeg of the prices — just
getting these somewhat right will increase the revenue.

A simple tracking ofC'p andCy is a starting point.

The bids maximizing the revenue during the period September 200to March
2010:

Quantile

—— Monthly averages — !'Operational tracking

00 04 0.8

| | | | |
2009-09-01 2009-11-01 L%G{Qj%—_Ol 2010-03-01

i
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Sizing of Energy Storage

Correct

o
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Solar Power Forecasting

Same principles as for wind power ....
Developed for grid connected PV-systems mainly installedooftops
Average of output from 21 PV systems in small village (Braagstin DK
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Method

=
]
—

i

@ Based on readings from the systems and weather forecasts

“ Two-step method

@ Step One: Transformation to atmospheric transmittanagh statistical clear sky
model (see below). Step Two: A dynamic model (see paper).

2000

1500
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500

60000

40000

tod [seconds]

20000

day Jon
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Example of hourly forecasts
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Software Modules for Wind Power Forecasting

Point prediction module

Probabilistic (quantile) forecasting module
Scenario generation module

Spatio-temporal forecasting module

Space-time scenario generation module
Even-based prediction module (eg. cut-off prob.)
Ramp prediction module

Same modules are available for solar Power Forecasting
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Energy Systems
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Wind Power Forecasting - Lessons Learned

The forecasting models must bdaptive (in order to taken changes of dust on
blades, changes roughness, etc., into account).

Reliable estimates of tHerecast accuracyis very important (check the reliability by
eg. reliability diagrams).
Reliable probabilistic forecasts are important to gainfthieeconomical value

Usemore than a single MET provider for delivering the input to the prediction tool
— this improves the accuracy of wind power forecasts witil 2@ct.

Estimates of theorrelation in forecasts errorsimportant.

Forecasts ofcross dependenciédetween load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cos$ functions.

Probabilistic forecasts can providaswersfor questions like
What is the probability that a giver@ﬁ;age IS large enowghhfe next 5 hours?

What is the probability of an increasefin wind power producinf more that 50
: I SR |
pct of installed power over the next two hours?% .

What is the probability of a down-regulation due to wind powe more than x
GW within the next 4 hours.

—The same conclusions hold for our tools &w. solar power forecasting
- Alan Turing Institute Workshop, January 2016 — p. 33
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