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Outline

I shall focus on wind power - and briefly mention solar power:

Status in Denmark

Energy-System OS

Forecasting and optimization/control

Wind power point forecasting

Use of several providers of MET forecasts

Probabilistic forecasting

Scenario forecasting

Space-time scenario forecasting

Use of stochastic differential equations

Examples on the use of probabilistic forecasts

Solar power forecasting
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Wind Power Statistics for Denmark
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Smart-Energy OS

Alan Turing Institute Workshop, January 2016 – p. 4



Stochastic Control and Optimization
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Direct vs Indirect Control
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Forecast Requirements
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Type of Forecasts
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Wind Power Forecasting - History

Our methods for probabilistic wind power forecasting have been implemented in the
Anemos Wind Power Prediction System, Australian Wind Energy Forecasting Systems
(AWEFS), WPPT, ....

The methods have been continuously developed since 1993 - incollaboration with
Energinet.dk,
Dong Energy,
Vattenfall,
Risø – DTU Wind,
The ANEMOS projects partners/consortium (since 2002),
Overspeed GmbH (Anemos: www.overspeed.de/gb/produkte/windpower.html)
ENFOR (WPPT: www.enfor.dk)

Used operationally for predicting wind power in Denmark since 1996.

Now used by all major players in Denmark (Energinet.dk, DONG, Vattenfall, ..)

Anemos/WPPT is now used eg in Europe, Australia, and North America.

Often used as forecast engine embedded in other systems.
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Uncertainty and adaptivity

The ramdom part of errors in MET forecasts will end up in errors in wind power forecasts,
but some time-varying systematic errors in MET forecasts and other factors call for adaptive
methods

The total system consisting of wind farms measured online, wind turbines not measured
online and meteorological forecasts will inevitably change over time as:

the population of wind turbines changes,

changes in unmodelled or insufficiently modelled characteristics (important
examples: roughness and dirty blades),

changes in the NWP models.

A wind power prediction system must be able to handle these time-variations in model and
system. An adequate forecasting system should useadaptive and recursive model
estimation to handle these issues.

Following the initial installation the software tool will automatically calibrate the models to
the actual situation.
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The power curve model

The wind turbine “power curve” model,
ptur = f(wtur) is extended to a wind farm
model, pwf = f(wwf , θwf ), by introducing
wind direction dependency. By introducing a
representative area wind speed and direction it
can be further extended to cover all turbines in
an entire region,par = f(w̄ar, θ̄ar).

The power curve model is defined as:

p̂t+k|t = f( w̄t+k|t, θ̄t+k|t, k )

where
w̄t+k|t is forecasted wind speed, and
θ̄t+k|t is forecasted wind direction.

The characteristics of the NWP change with
the prediction horizon.
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Plots of the estimated power curve for
the Hollandsbjerg wind farm.
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Regime-switching models

The evaluation set is

divided in 19 different

periods of different

lengths and

characteristics

MSAR models

generally outperform

the others

In the RADAR@sea

project the regime shift

is linked to convective

rain events – which

now are detected by a

weather radar.
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Spatio-temporal forecasting

Predictive improvement (measured in
RMSE) of forecasts errors by adding the
spatio-temperal module in WPPT.

23 months

15 onshore groups

Focus here on 1-hour forecast only

Larger improvements for eastern part
of the region

Needed for reliable ramp forecasting.
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Combined forecasting

A number of power forecasts are
weighted together to form a new
improved power forecast.

These could come from parallel
configurations of WPPT using NWP
inputs fromdifferent MET
providers or they could come from
other power prediction providers.

In addition to the improved perfor-
mance also the robustness of the sys-
tem is increased.

Met Office

DWD

DMI

WPPT

WPPT

WPPT

Comb Final

The example show results achieved for the
Tunø Knob wind farms using combinations
of up to 3 power forecasts.

Hours since 00Z

R
M

S
 (

M
W

)

5 10 15 20

55
00

60
00

65
00

70
00

75
00

hir02.loc
mm5.24.loc

C.all
C.hir02.loc.AND.mm5.24.loc

Typically an improvement on 10-15 pct
in accuracy of the point prediction is
seen by including more than one MET
provider. Two or more MET providers
imply information about uncertainty
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Uncertainty estimation

In many applications it is crucial that a pre-
diction tool delivers reliable estimates (prob-
abilistc forecasts) of the expected uncertainty
of the wind power prediction.

We consider the following methods for esti-
mating the uncertainty of the forecasted wind
power production:

Ensemble based - but corrected -
quantiles.

Quantile regression.

Stochastic differential equations.

The plots show raw (top) and corrected (bot-
tom) uncertainty intervales based on ECMEF
ensembles for Tunø Knob (offshore park),
29/6, 8/10, 10/10 (2003). Shown are the
25%, 50%, 75%, quantiles.

Tunø Knob: Nord Pool horizons (init. 29/06/2003 12:00 (GMT), first 12h not in plan)
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Quantile regression

A (additive) model for each quantile:

Q(τ) = α(τ) + f1(x1; τ) + f2(x2; τ) + . . .+ fp(xp; τ)

Q(τ) Quantile offorecast error from anexisting system.

xj Variables which influence the quantiles, e.g. the wind direction.

α(τ) Intercept to be estimated from data.

fj(·; τ) Functions to be estimated from data.

Notes on quantile regression:

Parameter estimates found by minimizing a dedicated function of the

prediction errors.

The variation of the uncertainty is (partly) explained by the independent

variables.
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Example: Probabilistic forecasts
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Notice how the confidence intervals varies ...

But the correlation in forecasts errors is not described so far.
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Correlation structure of forecast errors

It is important to model theinterdependence structureof the prediction errors.

An example of interdependence covariance matrix:
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Correct (top) and naive (bottom) scenarios
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Use of SDEs - Simple example

The state equation describes the future wind power production

dxt =− θ(ut) · (xt − p̂t|0)dt+

2
√

θ(ut)α(ut)p̂t|0(1− p̂t|0)xt · (1− xt)dwt,

with α(ut) ∈ (0, 1), and the observation equation

yh =xth|0 + eh,

whereh ∈ {1, 2, ..., 48}, th = k, eh ∼ N(0, s2), x0 = “observed power at t=0”, and

p̂t|0 point forecast byWPPT (Wind Power Prediction Tool)

ut input vector (heret andp̂t|0)
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Examples of using SDEs
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Use of SDEs provides a possibility for a joint description ofboth non-symmetrical
conditional densities as well as the interdependence of theforecasts.
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Motivation - Space-Time Dependencies
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This is not enough...
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Space-Time Correlations
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Space-time trajectories
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Wind power – asymmetrical penalties

The revenue from trading a specific hour on NordPool can be expressed as

PS × Bid +

{

PD × (Actual− Bid) if Actual > Bid
PU × (Actual− Bid) if Actual < Bid

PS is the spot price andPD/PU is the down/up reg. price.

The bid maximising the expected revenue is the followingquantile

E[PS ]− E[PD]

E[PU ]− E[PD]

in the conditional distribution of the future wind power production.
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Wind power – asymmetrical penalties

It is difficult to know the regulation prices at the day ahead level – research into
forecasting is ongoing.

The expression for the quantile is concerned with expected values of the prices – just
getting these somewhat right will increase the revenue.

A simple tracking ofCD andCU is a starting point.

The bids maximizing the revenue during the period September 2009 to March
2010:
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Sizing of Energy Storage
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(Illustrative example based on 50 day ahead scenarios. Usedfor calculating the risk for a storage to be too
small)
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Solar Power Forecasting

Same principles as for wind power ....

Developed for grid connected PV-systems mainly installed on rooftops

Average of output from 21 PV systems in small village (Brædstrup) in DK
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Method

Based on readings from the systems and weather forecasts

Two-step method

Step One: Transformation to atmospheric transmittanceτ with statistical clear sky
model (see below). Step Two: A dynamic model (see paper).
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Example of hourly forecasts
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Software Modules for Wind Power Forecasting

Point prediction module

Probabilistic (quantile) forecasting module

Scenario generation module

Spatio-temporal forecasting module

Space-time scenario generation module

Even-based prediction module (eg. cut-off prob.)

Ramp prediction module

Same modules are available for solar Power Forecasting
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National Research Centre for IT-Intelligent
Energy Systems
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Wind Power Forecasting - Lessons Learned

The forecasting models must beadaptive (in order to taken changes of dust on
blades, changes roughness, etc., into account).

Reliable estimates of theforecast accuracyis very important (check the reliability by
eg. reliability diagrams).

Reliable probabilistic forecasts are important to gain thefull economical value.

Usemore than a single MET provider for delivering the input to the prediction tool
– this improves the accuracy of wind power forecasts with 10-15 pct.

Estimates of thecorrelation in forecasts errors important.

Forecasts of ’cross dependencies’ between load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cost functions.

Probabilistic forecasts can provideanswersfor questions like
What is the probability that a given storage is large enough for the next 5 hours?
What is the probability of an increase in wind power production of more that 50
pct of installed power over the next two hours?
What is the probability of a down-regulation due to wind power on more than x
GW within the next 4 hours.

The same conclusions hold for our tools foreg. solar power forecasting.
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