

Smart-cities-centre.org

@CITIES_Centre

in cities-innovation-center

/nnovation Fund Denmark

Low-carbon municipalities: modelling of Sønderborg, Denmark*

Dadi Sveinbjörnsson¹, Sara Ben Amer², Anders Bavnhøj Hansen³, Loui Algren⁴, Allan Schrøder Pedersen⁵

¹ formerly: DTU Energy, Technical University of Denmark, Roskilde, Denmark; ² DTU Management, Technical University of Denmark, Lyngby, Denmark; ³ Energinet.dk, Fredericia; ⁴ Danish Energy Agency, Copenhagen; ⁵ DTU Energy, Technical University of Denmark, Roskilde, Denmark

* This brochure is based on the paper published in June 2017, entitled:"Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality": https://doi.org/10.1016/j.apenergy.2017.03.086

Introduction

Energy policy and CO_2 reduction targets the on municipal level play а significant role in the national CO₂ reduction and global efforts. In 2009 Sønderborg, a municipality located in southern Denmark, set the target of becoming CO₂-neutral by 2029 and developed a plan to achieve the target. This study aims at comparing alternative pathways for achieving a lowcarbon energy system in Sønderborg, where novel energy conversion technologies such as large-scale heat pumps, production, thermal biogas gasification, electrolysis, biogas methanation and transport fuel synthesis are investigated.

Scenario	Scenario description
name	
Municipal	Scenario according to the strategic energy plan
plan (A)	of Sønderborg municipality
Biomass (B)	Low fossil-fuel scenario: biomass replaces
	fossil fuels, no significant electrification (e.g.
	no utility-scale heat pumps)
Electrification	Low fossil-fuel scenario: focus on
(C)	electrification, biomass consumption kept close
	to the locally available limits
Electrolysis	Same as C, with the addition of gasification
(D)	and solid oxide electrolysis for a more energy-
	efficient biomass utilization. Biogas upgrade
	conducted through biogas methanation instead
	of CO ₂ removal
Reversible	Same as D, with the addition of reversible solid
electrolysis	oxide cells for electrolysis and fuel cell
(E)	operation

Energy scenarios investigated in this study

Methods

The main method is modelling of energy supply, using Sifre, a mixed-integer linear optimization tool, which optimizes energy flows and energy prices in all sectors of the specified energy system in discrete time steps.

The results for the five different model scenarios for 2029 are evaluated and compared using the following four indicators: the total system socio-economic costs, the energy system's net CO_2 emissions, the total biomass consumption (relative to the locally available resources) and the total energy conversion efficiency of the system.

Results

The Electrification has the scenario highest total system energy conversion efficiency and least dependence on biomass.

The Electrolysis and Reversible electrolysis scenarios are most feasible from a system cost and CO₂ emission perspective, while providing substantial biomass consumption savings.

The sensitivity analysis shows that the Electrolysis and Reversible electrolysis scenarios perform best on the emissions and cost even if electricity and fossil fuel prices change. Only a drop in biomass prices would make the Biomass scenario the least costly.

Conclusions

- Scenarios with a high degree of electrification perform better on the selected indicators than scenarios with a high degree of biomass utilization.
- Electrolysis and reversible electrolysis are promising conversion technologies to be used on a municipal scale.
- Achieving the CO₂ emission goals in the most energy-efficient, cost-effective and sustainable way requires comparing a wide range of energy system configurations.
- These findings can be transferable to other middle-sized northern European cities with limited biomass resources.

Contact

Sara Ben Amer (sbea@dtu.dk) is Postdoc at the Department of Technology, Management and Economicsat DTU.Acknowledgment: Innovation Fund Denmark. Grant 1305-00027B