

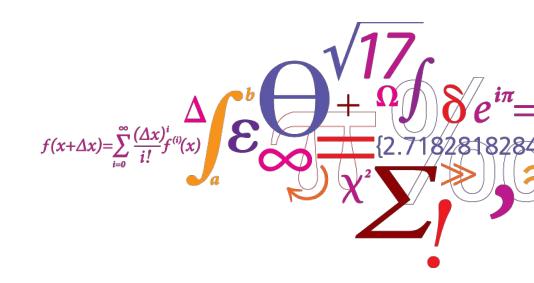


# Use of CO2 measurements for indirect classification of presence and occupancy behavior in summerhouses

OB-16 Symposium, Ottawa 3 August 2016

Magnus Bitch Henrik Madsen Jan Kloppenborg Møller

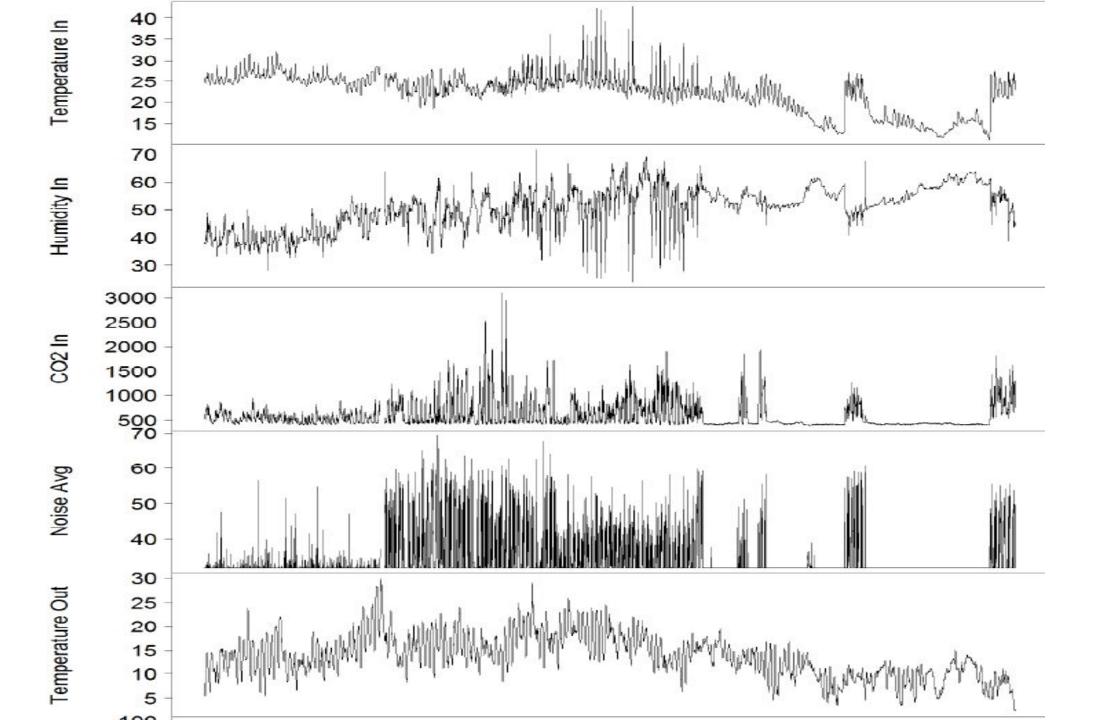
Technical University of Denmark, Copenhagen





#### Summer houses represent a special challenge

- Large variation in the number of people present in the house
- Power Grids in summer house areas represent a special problem for some DSOs
- Time series of CO2 measurements are the key to the classification







#### Homogen Hidden Markov Model

Setting

$$y_t = h(CO_{2,t})$$

$$p(x_t|x_{t-1}) \sim \Gamma$$

$$p(y_t|x_t) \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right) \text{ for } i = 1, 2, \dots, m$$

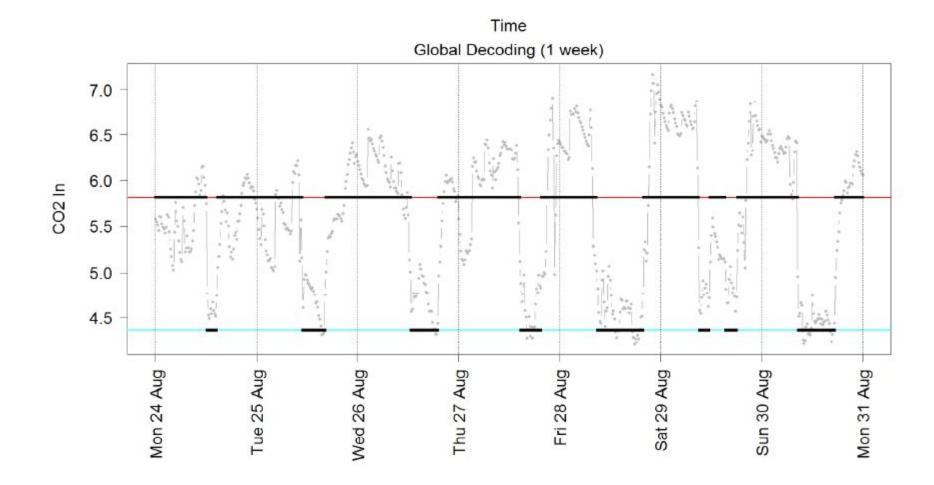
Note that there is no time dependence in the transition probabilities in the homogen case.



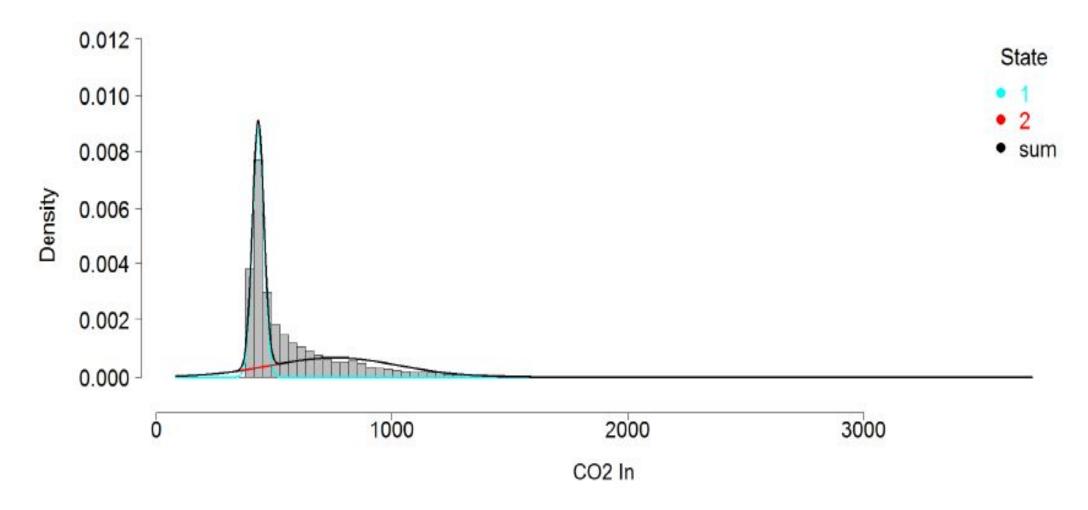
Table 8.4: Comparison of univariate (log transformed  $CO_2$ ) homogen HMMs for 2 to 5 states.

| 5        | $\mathcal{L}$ | p  | AIC   | BIC   |
|----------|---------------|----|-------|-------|
| 2 states | -9378         | 6  | 18768 | 18814 |
| 3 states | -4292         | 12 | 8609  | 8701  |
| 4 states | -800          | 20 | 1640  | 1795  |
| 5 states | 2181          | 30 | -4303 | -4071 |











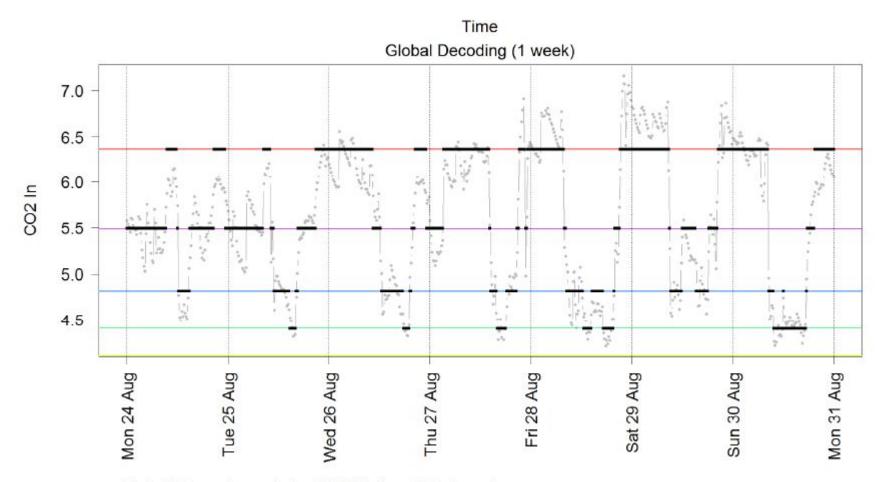
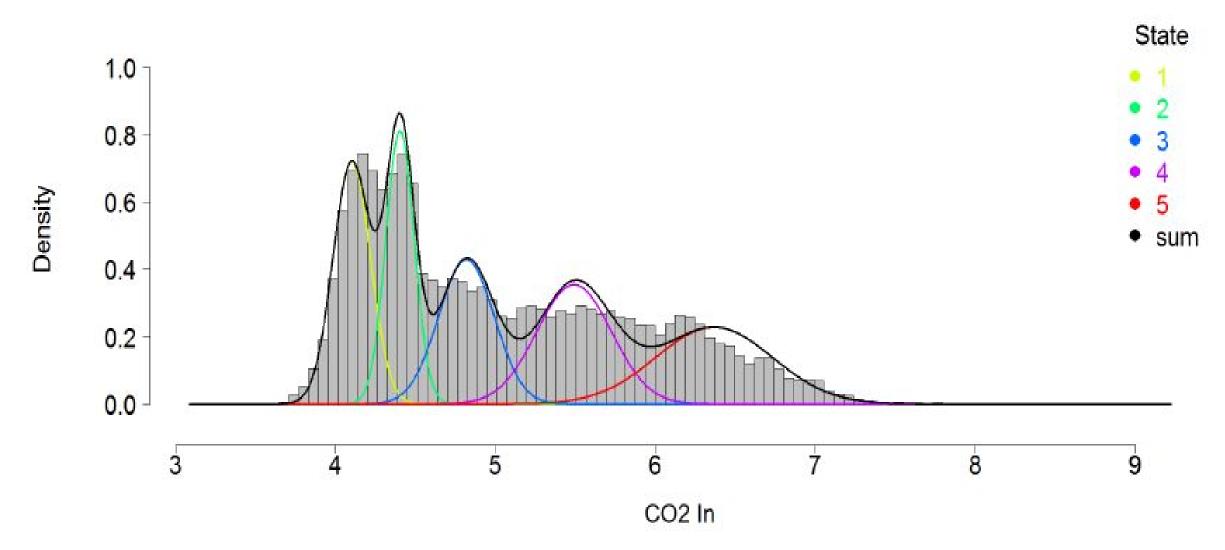
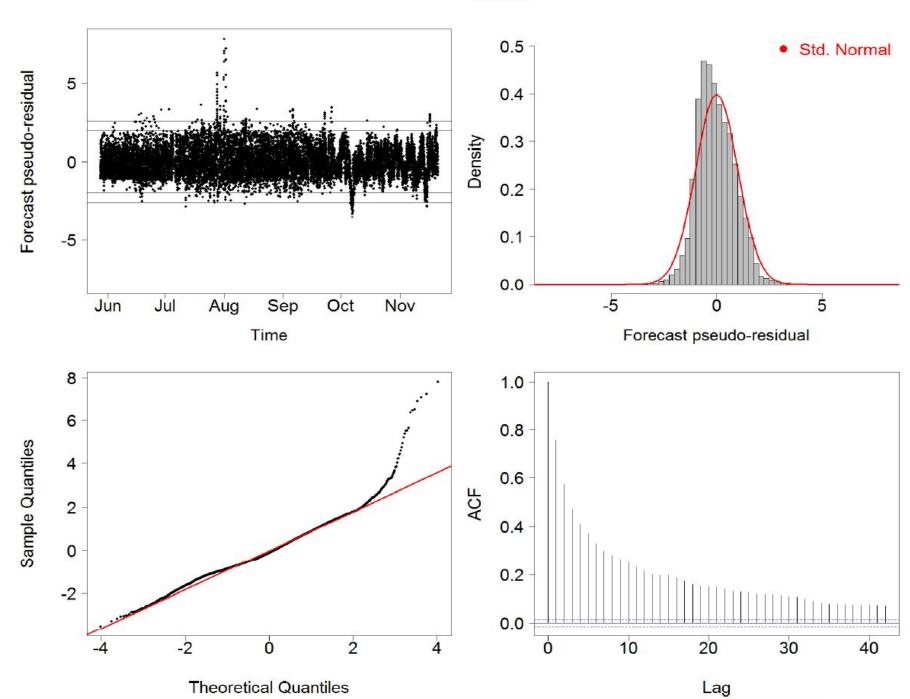


Figure 8.7: Global Decoding of the HMM (log  $CO_2$ ) with 5 states.









#### Inhomogen Hidden Markov Model

Setting

$$y_t = h(CO_{2,t})$$

$$p(x_t|x_{t-1}) \sim \Gamma_t$$

$$p(y_t|x_t) \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right) \text{ for } i = 1, 2, \dots, m$$

Note that there is time dependence in the transition probabilities in the inhomogen case.

## Inhomogen Markov-switching with auto-dependent observations



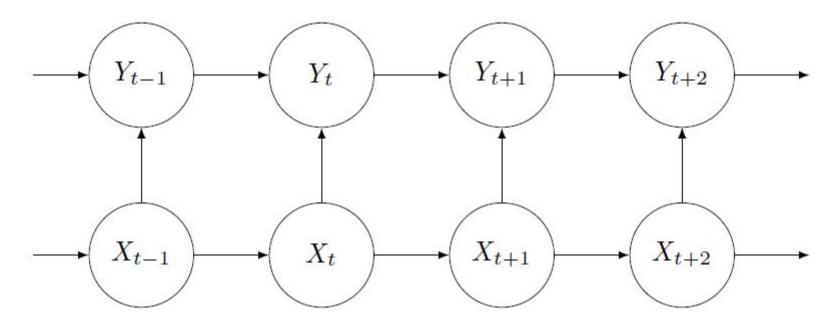


Figure 8.10: Directed graph of Markov switching AR(1).



### Inhomogen Markov-switching AR(1)

Setting

$$y_t = h(CO_{2,t})$$

$$p(x_t|x_{t-1}) \sim \Gamma_t$$

$$p(y_t|x_t, y_{t-1}) \sim \mathcal{N}\left(c_i + \phi_i y_{t-1}, \sigma_i^2\right) \text{ for } i = 1, 2, \dots, m$$

Note that there is time dependence in the transition probabilities in the inhomogen case.



#### Interpretation of the states

- State 1: Absence or sleeping
- State 2: Long term absence
- State 3: Outdoor interaction
- State 4: Presence (high activity)
- State 5: Presence (long term, low activity)



Table 8.11: Coefficients of final model.

|                               | State 1 | State 2 | State 3 | State 4 | State 5 |
|-------------------------------|---------|---------|---------|---------|---------|
| Stationary Mean (µ)           | 4.208   | 4.155   | 5.335   | 29.499* | 8.535*  |
| Standard deviation $(\sigma)$ | 0.038   | 0.062   | 0.373   | 0.131   | 0.034   |
| AR(1) Intercept $(c)$         | 0.125   | 0.380   | 1.318   | 0.029   | 0.009   |
| $AR(1)$ Coefficient $(\phi)$  | 0.970   | 0.909   | 0.753   | 0.999   | 0.999   |
| $eta_0$                       | 3.042   | 7.643   | 21.982  | 2.364   | 8.532   |
| $eta_1$                       | 0.985   | 0.481   | -0.797  | -1.274  | 0.178   |
| $eta_2$                       | -0.757  | -0.661  | -1.138  | -0.913  | 1.481   |
| $eta_3$                       | 0.561   | 0.862   | 0.695   | 0.370   | -1.546  |

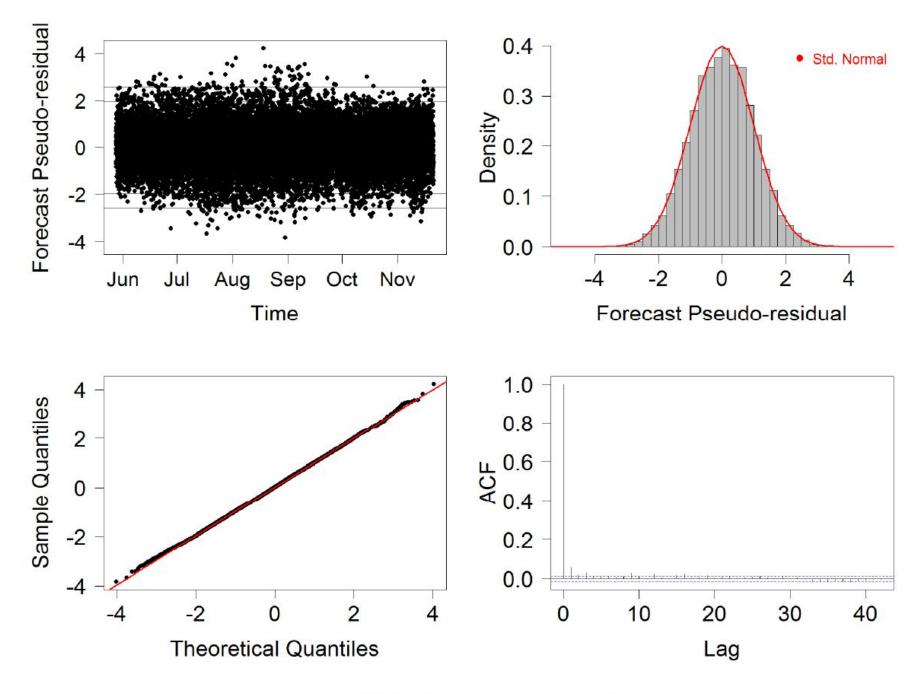
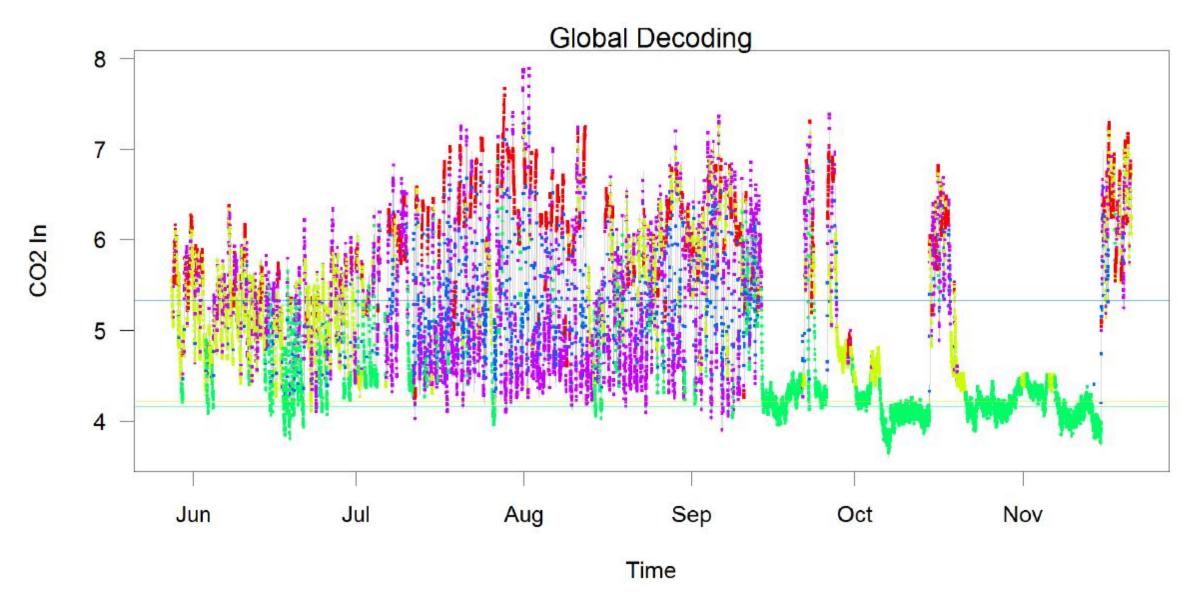
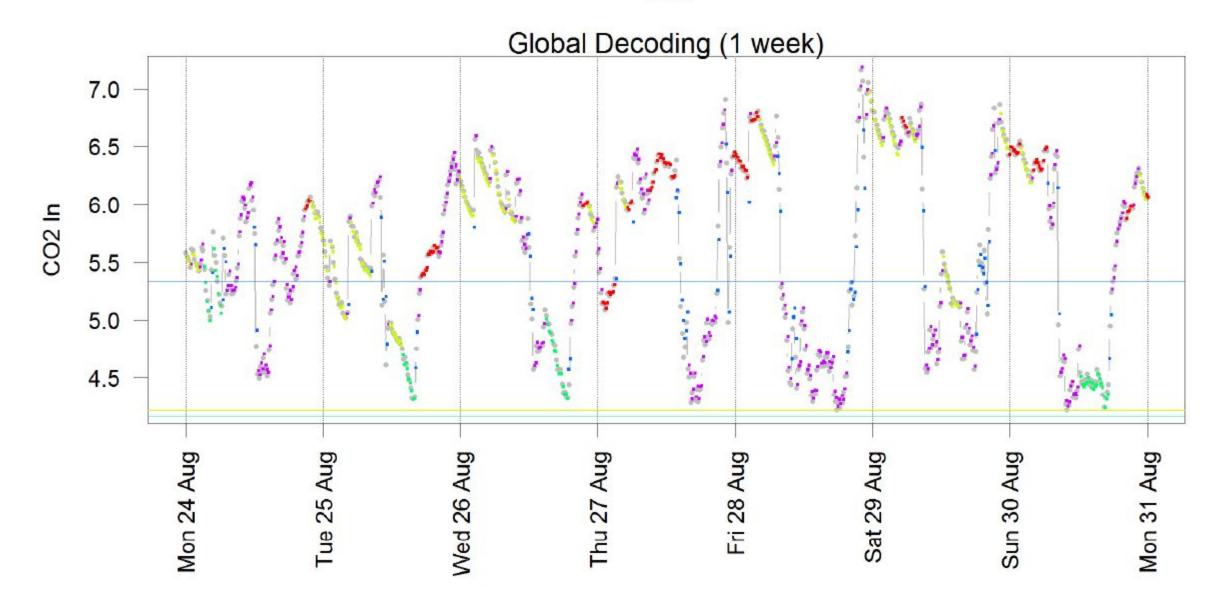


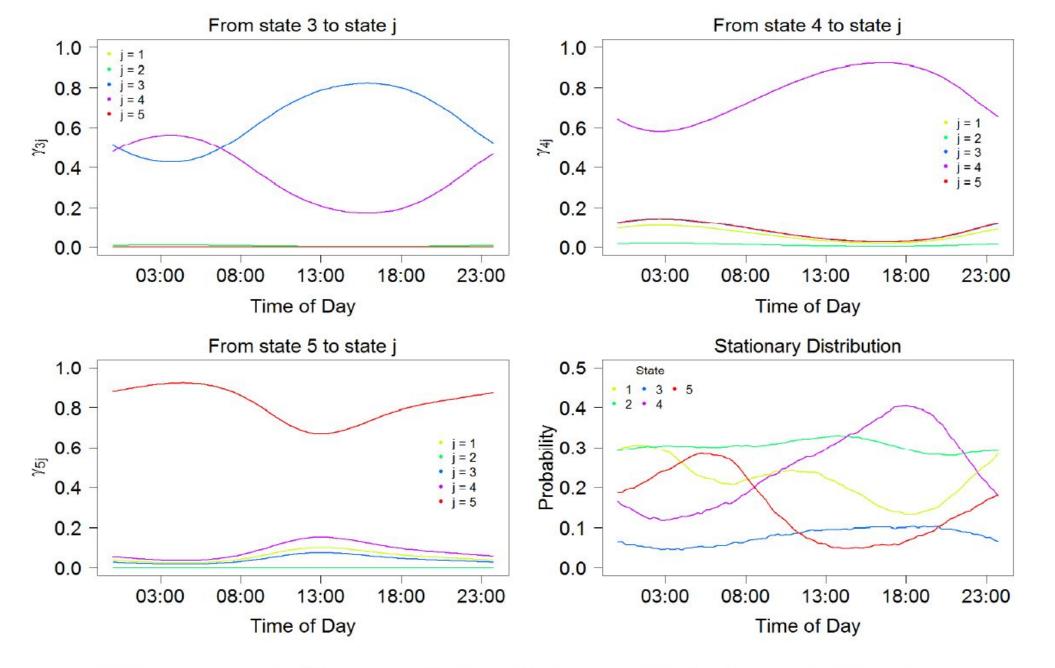
Figure 8.11: Model diagnostics of the final model.





Time





<sup>15</sup> Figure 8.16: Transition probabilities over the day of the final model. The lower right plot is the stationary distribution.

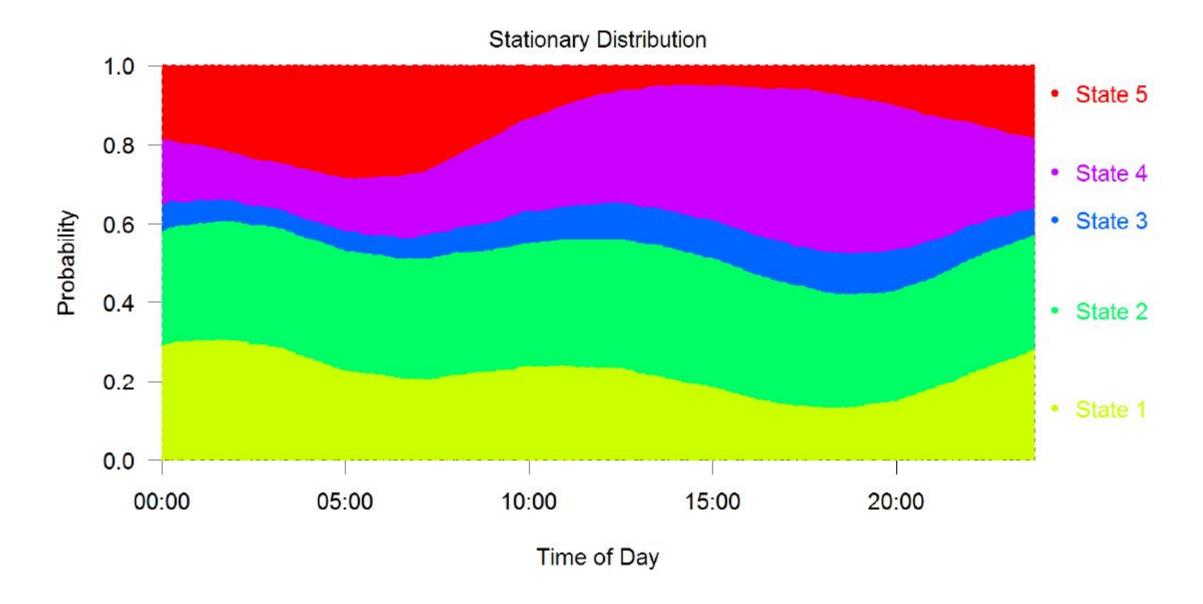


Figure 8.17: Profile of the states over the course of the day. I.e. Stacked stationary probabilities over the course of the day of the final model.