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Presenter Profile

Y Received his Bachelors in mathematics from Rowan University in May
2013. During his time at Rowan he focused heavily on statistical methods
and theory. He is currently an IGERT Fellow pursuing a co-major PhD in
Wind Energy Science Engineering Policy and Statistics. During his senior

) year at Rowan, Michael interned as a junior level statistician with Comcast
4 Spectacor in Philadelphia. His research at ISU is focused on modern
systems (wind turbines) that are providing large amounts of system-use
and environmental data .While using this data, with appropriate statistical
modeling; he hopes to provide improved predictions of component and
system lifetimes. The benefits from this research will include, but not be
limited to providing important prognostic information on maintenance
and replacement needs for individual units.
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Recent Research Topics

Cox Proportional Hazard Modeling for Cancer patients (Spring 13) — suvil funcion
- No past information matters "

- Survival Analysis Techniques 5 o

- Non parametric Kaplan Meir Estimation 3 oed

Bootstrap with fractional weights (Dirichlet Distribution) (Fall 13) R : :

- Simulation techniques via R statistical coding algorithms

4 5
- Smoothing of median distributions

Proton Exchange Membrane Fuel Cell RUL (Summer 2014/Current) .
- Enhance prediction accuracy
- Cross validation algorithms

- Sample size issue O
b

- Improve industry/university approaches

Power Converter Failure Predictive via Dynamic Covariate FC1 ( Learning dataset ()
utilization in a Cumulative Damage Model (Fall 2014/Current) ! ’
- Prognostic health management of wind turbines

- Minimize crane costs via predictive maintenance

- Big Data sorting algorithms

FC2 ( Testing dataset O ?? Challenge ??

t=0h t=550h t=1155h
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Recent Publications

American Institute of Mathematical Sciences Energy Journal

e Armando L. Figueroa-Acevedo, Michael S. Czahor and David E. Jahn (2015) A
comparison of the technological, economic, public policy, and environmental factors of
HVDC and HVAC interregional transmission. AIMS Energy 3(1): 144-161 (Published)

International Journal of Prognostics and Health Management

e Qiangian Shan, Michael S. Czahor and Dr. William Q. Meeker (2015) Proton electrolyte
membrane fuel cell prognostics using non-linear Bayesian tracking methods and
intervention analysis. IJPHM (Editing)

-omparison: Distance 600 km Log and Linear Fit with intervention for FC2
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Presentation Outline

PART 1
» ISU Degree Program in Wind Energy Science Engineering and Policy (WESEP)
» Wind-Related Research Activities
»  Wind Energy Student Organization at lowa State University

PART 2

» My Research at lowa State:
largely based on work with Dr. William Q. Meeker* W

»  Conclusions/Questions and Answers
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Part 1: WESEP at ISU

N
N IGERT: Wind Energy Science,
l Engineering, and Policy (WESEI




Wind Energy Science, Engineering & Policy

» A PhD degree in WESEP (just like EE, ME, etc.)

> Interdepartmental = Participating Departments include

Aerospace Eng. Sociology

Geological & Atmospheric Sciences Economics

Agronomy Statistics

Electrical & Computer Eng. Journalism & Communications
Materials Science Eng. Civil, Con & Environmental Eng.
Industrial & Man Systems Eng. Mechanical Eng.

Research structure is by following thrusts:
I Wind resource characterization & aerodynamics of wind farms
Il. Wind energy conversion system and grid operations
lll. Manufacturing, construction, and supply chain

IV. Turbine reliability & health monitoring

Dr. James D. McCalley
V. Economics, policy and public perception Principal Investigator
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Wind Energy Science, Engineering & Policy

» Can enter PhD program wit either BS or BS/MS

» US WESEP students receive

e For 24 to 30 months, $30,000/yr+ paid tuition and fees (via NSF)
e Remaining time, $21,000/yr +paid tuition and fees

e 3 months paid “international experience”
e 3 months industry internship opportunity
e Highly interdisciplinary training including:

WESEP 501: Wind Energy Resources
WESEP 502: Wind Energy Systems
WESEP 511: Wind Energy System Design
WESEP 512: Wind Energy System Deployment
WESEP 594: Wind Energy Research Seminar
“Core Courses”

e 4 Primary area core courses

e 3 Secondary area core courses

e 1 Policy course

IOWA STATE UNIVERSITY
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Overview of curriculum

Cognitive approaches,
team-based research,
leadership, ethics,
communications

WESEP 594 (ee 5948)

Real-Time Research
Seminar
(1 credit course
taken every
semester)

LEVEL 1: INTRODUCTORY COURSES (BREADTH)
Students take both WESEP 501 and 502
WESEP 501 WESEP 502

Every year

LEVEL 2: CORE COURSES (DEPTH AND BREADTH)
Students take 4 courses in major thrust, 3 in secondary thrust
Thrustl Thrust2 Thrust3 Thrust4  Thrust5
Courses Courses Courses Courses Courses

Level 2: POLICY COURSE*

Econ, PolySci, Soc,

JLMCC

LEVEL 3: SPECIALIZATION COURSES (DEPTH)
Students select one of WESEP 511 or 512

WESEP 511 Every 2 yrs WESEP 512

*If policy is a secondary area, then Level 2
course is chosen out of a thrust not major or
secondary.

IOWA STATE UNIVERSITY
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WESEP Students

e

Nick (EE/Econ) Michael (STAT) Austin (CE) Armando (EE) Matt (AeroE) Austin (ME) David (Met)

Helena (EE) Morteza (AeroE) Patrick (EE) Aaron (AeroE) Heather (ESM) Mat (CprE) Huiyi (IMSE)

Arne (STAT) Bin (CE) Babar (EE) Robert (CE)

IOWA STATE UNIVERSITY
Wind Energy Science Engineering & policy 9



Wind simulation & Testing Lab

Blue Tunnel 180 mph Laminar Flow Tunnel 90 mph Bill James Tunnel 180 mph

ABL 110 mph Tornado Micro-burst Simulator Icing Tunnel 200 mph and -30C

IOWA STATE UNIVERSITY
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Wind Energy Systems Lab

IOWA STATE UNIVERSITY
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Wind-related resea
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Using WRF for Short Term Wind Ramp Prediction---Wind Farms & Agricultural Yield --------------Dual Rotor Design----------

Takle/Gallus Meteorology Takle Agronomy
‘ﬁ A
Gearless permanent magnet direct drive (PMDD)
s Direct
: HH " | 'E L 300 Drive
" : = (PMGs)
=
2
o
| B
=
g Geared
o
2 (DFIGs)
(@ /
Rotor PMDD Generator Full Power Converter L P
(100% of full-rating) 6000 i
Input torque (kNm)

Fig. 5: Drive train configuration with DFIG.
Source: http://www.goldwindamerica.com/technology-
capabilities/pmdd/

mmmmemmeememem--COmpact Permanent Magnet Generators

Fig. 6: Scaling of drivetrain weight due to input torque in
wind turbines [12].

Hu AeroE

Jiles EE/MatSci
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Wind-related research activities

Power module
sub-system

| Power module PltCh System

Controt & Yaw system
comms
acelle

Gearbox

riye train
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* Multihop communications
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Wind-related research activities

y - |

------ Computational Fluid Structure Interaction Analysis Aeroelastic Loads & Response of WT Blades---

Hsu ME Sarkar AeroE

0.1
S o= FdfL

Wind Speed =25 m/s

CFD & WT Simulation Wind Farm Aeroacoustics Modeling------ Wake Interference----
Rajagopalan AeroE Sharma AeroE Hui AeroE
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Wind Energy Student Organization

Aaron Rosenberg Heather Sauder
Research Collaboration Committee Director Treasurer

Michael S. Czaho

Outreach Committee Director

IOWA STATE UNIVERSITY
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Wind Energy Student Organization

“The Wind Energy Student Organization (WESO) promotes wind energy
education and collaborative research at both the university and K-12

level. WESO is open to undergraduate, graduate, and professional
students. General meetings are held monthly, which include a lecture

on the topic of wind energy.

Dr. Eugene Takle
Mentor for WESO

IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy



Concluding Remarks (Part 1)

» National Science Funded IGERT WESEP Program = An interdisciplinary approach

»  Wind Energy Research Taxonomies = Detailed research broken into 5 thrust areas

>

>

>

>

>

» On campus resources at lowa State University

» WESO

Thrust 1 2 Wind Resource Characterization & Aerodynamics of Wind Farms
Thrust 2 2 Wind Energy Conversion System and Grid Operations

Thrust 3 >Manufacturing, Construction, and Supply Chain

Thrust 4 = Turbine Reliability & Health Monitoring

Thrust 5 > Economics, Policy, and Public Perception Contact Information for this presentation

Michael S. Czahor
PhD Student/Researcher
czahorO02@iastate.edu
570-309-8319

lowa State University
Co-Maijor: Wind Engineering/Statistics

Concentration: Reliability/Prognostics

www.igert.windenergy.iastate.edu/students

IOWA STATE UNIVERSITY
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Part 2: My Research




Major Technological Changes in Reliability Practice

» Computationally-intensive models can be used to accurately
predict some kinds of failure mechanisms (e.g., FEM is
commonly used to predict growth of fatigue cracks in
complicated geometries given known stress fields).

» Modern reliability field data including
State/Operating/Environmental (SOE) information

IOWA STATE UNIVERSITY
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Modern Reliability Field Data

»  Sensors, smart chips, as well as wired and wireless networks have
changed data collection processes in many areas of commerce,
engineering, and science.

»  Products and systems are being designed to contain automatic
data-collecting devices to track system state, operating
environment and use/abuse information.

»  System state, usage and environmental information dynamically
recorded and/or transmitted back to manufacturers over the
network (or downloaded periodically).

» Common structure: Potentially a large vector of dynamic covariate
values is obtained periodically (e.g., a vector time series received
every 10 minutes).

The next generation of field reliability data will contain richer
information for prediction and other purposes.

IOWA STATE UNIVERSITY
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Examples of Data

Wind turbine type WT1 ~ Wind turbine type WT2

. . Drivetrai Geared, distributed
Wind Turbine Types rvetrain cared, CRTEeS.
Generator DFIG Squirrel-cage IG
Converter location Inside nacelle Tower bottom
Transformer Converter rating Partially rated Fully rated

Electric  Converter

POWEr  technology
grid

IGBT based, low-voltage, back-to-back VSC

Gear- Y
box /

Power converter Number of 6 18
Jk? RS SESES; power (grid-side converter: 3, (grid-side conv.: 3x3,
modules generator-side conv.:3) gen.-side conv.: 3x3)
Power module Water-cooled design without baseplate, integrated
Module (;i << <I<EA details gate driver board, identical manufacturer

Turbine Type Descriptions [7]

’ Trans-
A4 ‘1/ A_AL A former
)f ‘»! T! v 15 R, h Electric
Gbeoaxr- Al At a A’ At a / power
| . ! / grid
_’l “s ‘ “: At L3
Module i .
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Examples of Data
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Other Examples Providing System
State/Operating/Environmental (SOE) data

» Locomotive engines

»  Aircraft engines and structures

»  Automobiles

»  Power distribution transformers

»  CT scanners and other large medical systems

»  Wind turbines

»  Solar energy power inverters

» Farm implements and large construction equipment, high-end

printers/copiers, high-end computers, some home entertainment
systems, and even smart phones

IOWA STATE UNIVERSITY
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Applications of SOE Data

» Early warning of emerging reliability issues
» Prediction of retirements/replacements in a fleet of systems
» Prediction of warranty returns

» System health management (SHM), condition-based
maintenance (CBM), prognostics

» Prediction of remaining life of individual systems

IOWA STATE UNIVERSITY
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Meaning of SHM

System Monitoring
Health

Structural Management
State

Materials Awareness

Engine
Power system
Prognostic

etc.

What is the Remaining Useful Life (RUL) of the system?
What is the Distribution of Remaining Life (DRL) of the system?

IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy



SHM, Condition-Based Maintenance and Prognostics
(Short-Term Prediction of System Failure)

»  The most common application of SOE data today

»  Much literature including several journals and annual conferences
devoted to SHM and prognostics

» Many sub applications

* Process monitoring and signal-detection algorithms can be used to
detect unsafe operating conditions or precursors to system failure

e Condition-based maintenance (CBM) plan maintenance actions
based on need instead of less efficient time-based schedules.

e Short-term predictions about the DRL of a system.

IOWA STATE UNIVERSITY
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Prediction of Remaining Life of Individual Systems

» Need to estimate the distribution of remaining life for a
single unit /, conditional on survival to the present time

(i.e., age t;)).

Fi(tci +t) — Fi(t:))
1— Fi(tci)

G(t) = Pr(T; < tlage t;j) = , t>0.

> Allows one to compute a prediction interval for remaining
life. Simple approximate method: quantiles estimates of

the distribution G(t).

> Little predictive ability without covariate information (see
Hong, Meeker, and McCalley 2009 for an example)

» SOE data providing information on such variables as
system load, temperature, and shock histories will allow
more precise (narrower) prediction intervals.

IOWA STATE UNIVERSITY
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Example: Field-Failure Predictions Based on
Failure-time Data with Dynamic Covariate Information

Qutline
» Product D2 application

» Model for failure-time data with dynamic covariates
» Model for the dynamic covariates

> Field-failure prediction

> Improvement for using dynamic data

Goal: To develop general models for predicting the
remaining life based on failure-time data with dynamic
covariate information

IOWA STATE UNIVERSITY
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Product D2 Subset of Data (Ignoring Covariate Information)

Event Plot
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Cumulative Exposure/Damage (Sedyakin) Model

> Describes the effect of a dynamic (time-varying) covariate
on failure-time.
»> Covariate history X(co) = x(c0).

> Each unit accumulates damage
u(t) = ult; B, x(1)] = J, exp[Bx(s)]ds.

» Each unit has cumulative damage random threshold U.

> Unit fails at time T when the amount of cumulative damage
reaches U.

» The relationship between cumulative damage U and failure
time TisU=u(T) = fOT exp[sx(s)]ds.

» The cumulative damage threshold U has baseline cdf
FO(u7 90)

IOWA STATE UNIVERSITY
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Illustration of Cumulative Exposure/Damage Model
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ML Estimate of the Cumulative Damage cdf
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Model for the Covariate Process X(t)

Linear random effects model
Xi(tj) = n+ Zi(tj))w; +¢j

where 7 is the mean, Z(t;) = [1, log(t;)],

w; = (Wo;, w1;) ~ N(0,Zy), g5 ~ N(0,52).
For unit /, the random effect wy; models the unit-to-unit
variability at time origins

The random effect wy; models the unit-to-unit variability in
trend.

ejj models within unit variability at time ;.

IOWA STATE UNIVERSITY
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Model for the Multivariate Covariate Process

> To predict a path into the future, it is necessary to have a
parametric model that can adequately predict the covariate
process

» In general, the following structure can be used
X(t) = m(t;n) + a(t) with a mean structure and error term
structure

» For example, temperature can be modeled as
X(t) = Trend(t) + Seasonal(t) + a(t)

» For most applications, the vector autoregressive (VAR)
model can be used

IOWA STATE UNIVERSITY
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Distribution of Remaining Life

DRL for the surviving units provides basis for predictions of
future field failures.

DRL for unit / is the distribution of T;, given the current time
in service t; and covariate process history X;(t;) = x;(t;).

That is p,'(S; 9) = Pr[t,- <T <t+ S|T, > t,-,X,-(t,-)], s > 0.
In particular,

pi(S: 0) = Ex, (4, +5) x,(t)=x;(t) {Prlti < Ti < & + s[Ti > ti, Xi(t;), Xi(ti, ti + s)]}
_ Exittutr9)x(t)=xi(t) {Fo (u[ti + s; 8, Xi(ti + 8)]: 80)} — Fo (u[ti; B, Xi(t)]; Oo)
1 — Fo (ult;; B, xi(t)]; 80)

where X;(ti, ) = {Xi(s) : tj < s < b} is the covariate
history for unit / from time #; to time b.

IOWA STATE UNIVERSITY
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Estimated DRL for Two Representative Units
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Example: Outdoor Weathering Prediction

The degradation of organic paints and coatings is primarily
driven by UV exposure with temperature and humidity as
secondary factors.

Data collected to study of service life of an organic
coatings in an outdoor environment

Outdoor weathering experiments were carried out in
Gaithersburg, MD, between 2002 and 2006

Groups of 36 specimens placed in a covered outdoor
environmental chamber on the roof of a building on the
NIST campus, starting at different times of the year

The outdoor temperature, humidity, and UV spectrum and
intensity were recorded during the test period

IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy



Degradation Measurements

0.0

Damage measured using FTIR at
intervals of several days

-0.1
l

We consider degradation of
aromatic C-O bonds (1250 cm™
on the FTIR spectrum)

Failure threshold is Dy = —0.4
(level where there would be
customer perceivable loss of
gloss)

Damage
-0.2
1

-0.3
l

-0.4
1

-0.5
|

|
0 50 100 150 200

Days since first measurement

Degradation paths for nine
representative specimens
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Dynamic Temperature and RH Information

Temperature

% 30

15 20
Months since 01JAN2002

Daily Temperature

Helative humidity

100 -

3
1

3
1

&
1

b

Months since 01JAN2002

Daily RH

Environmental covariates show seasonal patterns
UV dosage shows more variability during summers

Due to different starting times, each group has its own
dynamic covariate profiles, and thus different degradation
rate profiles
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Fitted Mean and Variance Structure for Temperature
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General Additive Model

General additive model to incorporate dynamic covariate
into the degradation path model

yi(tj) = D[ty; xi(t)] + R(tj; wi) + €i(ty)

Dlty; xi(ty)] = Bo + £y Jo' filxu(r): Bld

Bo is the initial degradation level

B, is the parameter vector for the effect of covariate /
The coefficient vector is 3 = (5o, 87, - - -, Bp)’

R(t, w;) is a monotone function of t. A simple but useful
form is R(tj; wi) = wp; + wy;t; where the random effect
w; = (Wi, wy;)’ describes unit-to-unit variability.

ei(tj) is the noise term.

IOWA STATE UNIVERSITY
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Failure-time Distribution

The failure-time distribution provides the reliability
information for an unobserved population

Given covariate process X(oo) = X(o0) and individual
random effect w, the degradation path is deterministic

The first crossing (failure) time tp is
tp = min{t: D[t; x(c0)] + R(t; w) = Dy}
The first crossing time tp is a function of Dy, x(c0), and w.

Because X(oo) and w are random, the first crossing time is
a random variable

The cdf of T = T[Dy, X(0), w] is

F(t;0) = EX(OO)EWPr{T['Df, X(oc0),w] <t}, t>0
Distribution of remaining life can be expressed in a similar
wa
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Future Population Prediction Results
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Generic Reliability Prediction Model

» Key ldea: **Physics is mostly smooth and deterministic**;
variability is due to unit-to-unit differences and stochastic environment/use variables
» Model the reliability response, conditional on the observed covariate histories for each
unit
»  Failure time data
» Degradation data (perhaps visible above a detection limit or after initiation)
»  Success/Failure at age (quantal-response) data
» Model may be:
» Simple (e.g., linear cumulative damage)
»  Physics-based (e.g., FEM fatigue crack growth)

» Develop a model for the covariate process history. For example:
» Time series for environmental/use variables
»  Point process model for random shocks

Possibly with seasonality or unit-to-unit random effects
»  Predict future damage based on predictions of the covariate processes
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Technical Needs for an Effective Reliability Prediction

»  Well understood failure mode(s)

» Model for the relationship between the reliability-data response for individual units’
covariate histories

»  Definition of failure in terms of the reliability-data response
»  Ability to predict covariates for individual units

Empirical modeling can, to some extent, make up for limited knowledge about the physics
of failure and the effect of covariate histories
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Concluding Remarks

»  Reliability models that use rate/environmental dynamic covariate information and
realistic physics-based computer models have the potential to improve safety and
reduce costs.

»  Predictive models can be built on the basis of either failure-time data, degradation
data, or success/failure at age data.

»  Use of physics-based computer models can be useful (or essential), especially when
extrapolation is needed

»  Key tasks are to:

» Model the relationship between failure (or damage) and the dynamic covariates
» Develop a model for the dynamic covariates

» The increased availability of covariate data from systems implies the need for more
involvement of statisticians in the analysis and modeling of reliability/SOE data.
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QUESTIONS
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