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Existing Markets - Challenges

Dynamics
Stochasticity

Nonlinearities

¢ ¢ ¢

¢

Many power related services (voltage, frequency, balancing, spinning
reserve, congestion, ...)

© Speed / problem size
© Characterization and use of flexibility

©® Requirements on user installations
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pl— Preparatory study on 7
SR Smart Appliances

Commission

= | - Ecodesign Preparatory Study
. performed for the
European Commission

Welcome Project summary Planning & Meetings Documents Register for website Register for meeting Contact & Consortium

Home Project summary

Project Summary R/

The Ecodesign Preparatory Study on Smart Appliances (Lot 33) has analysed the technical, economic, market an %tal aspects with a view to a broad introduction of smart
appliances and to develop adequate policy approaches supporting such uptake. @
The study deals with Task 1 to 7 of the Methodology for Energy related products (MEErP) as follows: ,

« Scope, standards and legislation (Task 1, Chapter 1); 0
« Market analysis (Task 2, Chapter 2); o

« User analysis (Task 3, Chapter 3); A/

« Technical analysis (Task 4, Chapter 4);

« Definition of Base Cases (Task 5, Chapter 5); G '

« Design options (Task &, Chapter 6);

« Policy and Scenario analysis (Task 7, Chapter 7). /6 .
An executive summary of the project results can be downloaded here. ///0
Throughout the study, new relevant aspects have come up which will be covered in a second phase of the Preparatory Study: , t

« Chargers for electric cars: technical potential and other relevant issues in the context of demand response.
« The modelling done in the framework of MEErP Task 6 and 7 will be updated with PRIMES data that recently became available, and with the EEA-countries.
« The development and assessment of policy options that were identified in the study will be further elaborated and deepened.
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COMPETITIVE BIDDING AND STABILITY ANALYSIS

IN ELECTRICITY MARKETS USING CONTROL THEORY

Main idea: applying control theory to the study of power markets

Advantages in handling effectively

—

Dynamics Uncertainty
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control theory provides ways of stochastic control theory allows for
modeling the dynamics which taking into account different sources of
is intrinsic in energy markets uncertainty (wind, ...)
it is possible to develop advanced itis possible to develop bidding strategies
bidding strategies which exploit the which are optimal with respect to the
inclusion of the dynamics in the model stochastic characteristics of the market
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Temporal and Spatial Scales N
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The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems at all scales.

fnens

Geographical Scale

Complexity
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Proposed methodology
Control-based methodology
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Models for systems of systems CH
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Intelligent systems integration using data and ICT
solutions are based on grey-box models for real-time

operation of flexible energy systems
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SE-OS Characteristics —
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‘Bidding - clearing - activation’ at higher levels N
Nested sequence of systems - systems of systems
Hierarchy of optimization (or control) problems

Control principles at higher spatial/temporal resolutions

¢ e e ¢ ¢

Cloud or Fog (IoT, loS) based solutions - eg. for forecasting and
control

¢

Facilitates energy systems integration (power, gas, thermal, ...)

Allow for new players (specialized aggregators)

¢ @€

Simple setup for the communication and contracts

¢

Provides a solution for all ancillary services

Harvest flexibility at all levels
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Case study No. 1

Control of Power Consumption using
the Thermal Mass of Buildings
(Peak shaving)
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Aggregation (over 20 houses)

3 —
‘ — Aggregated consurmption [kWh
2 —
L a JMM
0 M 1 ,.IH il I I
12 125 20 205 21 225
Diays

Price-responsive temperature setpoint [*C]

Original termnperature setpoint [*C]

12 125 20 205 21 215 22 22.5 23
Doays
10~
| Price L
5 — |—J """"" Standardized price
Ofer e T
-5 | | | | | | | |
19 195 20 205 21 215 22 225 23
Days

CITIES

Centre for IT Intelligent Energy Systems

b

ZEN Workshop, SINTEF, Oslo, March 2018



% Innovation Fund Denmark
Non-parametric Response on N
Price Step Change
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Control of Energy Consumption

Model parameters

Price-response
—> estimator -«
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Considerable reduction in peak consumption
Mean daily consumption shift
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Case study No. 2

Control of Heat Pumps for buildings
with a thermal solar collector
(minimizing cost)
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Schematic of the heating sv
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Modeling Heat Pump and Solar Collector
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d Avanced Controller

Formulation

The Economic MPC problem, with the constraints and the model,
can be summarized into the following formal formulation:

N-1
min ¢ = Z c’ uy (4a)

C73 k=0
Subject to  xxi11 = Axx + Bug + Edyk =0,1,...,N—1 (4b)
Vo= Ex3 k= 12 ool (4c)
Umin < Uk < Umax kzorlr“':N_l (4d)
Dlhin € Bl < Dblpisy ¥=01,...,N—1 (4e)
Ymin < Yk < VYmax k=0,1,...,N (4f)
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EMPC for heat pump with
solar collector (cost savings 25 pct)
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Flexibility Setup and Control
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Penalty Response

r

Figure 1: A smart building is able to respond to a penalty or external control
signal.
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Flexibility Function
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Figure 2: The energy consumption before and after an increase in penalty. The
red line shows the normalized penalty while the black line shows the normal-
ized energy consumption. The time scale could be very short with the units be-
ing seconds or longer with units of hours. At time 2.5 the penalty is increased,
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Penalty Function (examples)
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e Real time CO,. If the real time (marginal) CO, emis-
sion related to the actual electricity production is used as
penalty, then, a smart building will minimize the total car-
bon emission related to the power consumption. Hence,
the building will be emission efficient.

e Real time price. If a real time price 1s used as penalty, the
objective 1s obviously to minimize the total cost. Hence,
the building is cost efficient.

e Constant. If a constant penalty is used, then, the con-
trollers would simply minimize the total energy consump-
tion. The smart building 1s, then, energy efficient.
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Smart Grid Application
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Peak shaving,

Vaeltage contrel, Energy efficient, Emission efficient, Cost efficient

Balancing, ... depending on selected Penalty Signal

Congestion managemeant,

o] R Flexibility Function
; (Estimator)

Figure 8: Smart buildings and penalty signals.
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Procedure for calc. Flex. Index =

for energy, price and emission based flexibility char.
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The test consists of the following steps:
1. Let A: be the price of electricity at time ¢.

2. Simulate the control of the building without considering the price, and let
uf be the electricity consumption at time ¢.

3. Simulate the control of the building considering the price, and let u} be
the electricity consumption at time ¢.

4. The total operation cost of the price-ignorant control is given by
0 _ TN 0
CY =D 1 Ay

5. Similarly the operation cost of the price-aware control is given by
1 N 1
Ch =D 1 Mu;.

6. 1 — g—; is the result of the test, giving us the fractional amount of saved
money.

This test is inspired by minimizing total costs for varying electricity prices,
but in general A; could just represent ones desire to reduce electricity demand
at time 1.

> CITIES

= Centre for IT Intelligent Energy Systems ZEN workShop, S|NTEF, OSIO, March 2018



o _ _ ﬁ
. o4
-~ InnovationFun | ceememeoo-- : e L EEERE , A
& | | | | - &
i ! i !
i : i !
i |
_ ;"l - L, L e — i - a |
o
B E - —
|Ell ZEROQO EMISSION
o= _| | 8 NEIGHBOURHOODS
o IN SMART CITIES
2 4 - 2
e -
M T T T T T T T T T T T T T T T 1
00:00 0600 12:00 18:00 00:00 06:00 12:00 18:00 00:00
= e
a
=
T 8-
&
=
=]
,3 _
T T T T T T T T T T T T T T T T 1
00:00 0E:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
g [
N o
" | =
g o c
g ° g
bl ’ g - 2
2 ~ °
g g _—
E o - -~ o
§ _d_,_.a-'""f — =]
= § T ~
= / - S
.--'/
od = L =

I T T T T T T T T T T T T T T T 1
/ C I T I E 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Centre for IT In :, OSIO, Ma.rCh 2018



% Innovation Fund Denmark . . Z
Characteristics =N

EMISSION
BOURHOODS
ART CITIES

2

( A/ X
@ 5
-‘g‘ 8 — t | ///////fj’/mm;/kw;u L g :";‘
= o )
3= /.B
© I @
28 — Electricity demand S
% o | a _ —— Electricity price TS E
N - L=
g o A o E
E o A 00 o
5 = T T T T T I =

0 2 4 6 8 10
Time

Figure 4: Six characteristics of the demand response to a step increase in elec-
tricity price. 7: The delay from adjusting the electricity prize and seeing an
effect on the electricity demand, equal to approximately 0.5 here. A: The max-
imum change in demand following the price change, in this case close to 0.2. «:
The time it takes from the change in demand starts until it reaches the lowest
level, approximately equal to 0.5 here. 5: The total time of decreased electricity
demand, roughly equal to 2 here. A: The total amount of decreased energy de-
mand, given by the green-shaded area. B: The total amount of increased energy
demand, given by the grey-shaded area.
i
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FF for three buildings
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Figure 5: The Flexibility Function for three different buildings.
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Figure 6: Penalty signals based on wind and solar power production in Den-
mark during some days in 2017.
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Expected Flexibility Savings Index =
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Table 1: Expected Flexibility Savings Index (EFSI) for each of the buildings
based on wind, solar and ramp penalty signals.

Wind (%) Solar (%) Ramp (%)
Building 1 | 11.8 3.6 1.0
Building 2 | 4.4 14.5 5.0
Building 3 | 6.0 10.0 18.4
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Reference Penalties
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Figure 7: Reference scenarios of penalty signals related to ramping or peak
issues as well as the integration of wind and solar power.
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Table 2: Flexibility Index for each of the buildings based reference penalty
signals representing wind, solar and ramp problems.

Wind (%) Solar (%) Ramp (%)
Building 1 | 36.9 10.9 5.2
Building 2 | 7.2 24.0 11.1
Building 3 | 17.9 35.6 67.5
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Energy Flexibility
Some Demo Projects
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Control of WWTP (ED, Kruger, ..)
Heat pumps (Grundfos, ENFOR, ..)
Supermarket cooling (Danfoss, T, ..)
Summerhouses (DC, ENDK, SE, ..)
Green Houses (NeoGrid, ENFOR, ....)
CHP (Dong Energy, EnergiFyn, ...)
Industrial production

EV (Eurisco, Enfor, ...)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
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Summary

@ A procedure for data intelligent control of flexible loads, using the Smart-Energy OS
(SE-OS) setup, is suggested.

[ The SE-OS controllers can focus on

Peak Shaving

Smart Grid demand (like ancillary services needs, ...)
Energy Efficiency

Cost Minimization

¥ % ¥ % %

Emission Efficiency

@ We have defined two concepts :
1) Flexibility Function

2) Flexibility Index

@ We have demonstrated a large potential in Demand Response using the Flexibility
Function. Automatic solutions are important
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