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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems (incl. buildings) at all scales.

fnens

Geographical Scale

Complexity
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The Danish Wind Power Case

.. balancing of the power system
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In the first half of 2017 more than 44 pct of

In 2008 wind power did cover the entire electricity load was covered by wind
demand of electricity in 200 hours power.
(West DK)

For several days the wind power production was
more than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power
load was covered by wind power
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f— Preparatory study on
S Smart Appliances

Welcome Project summary Planning & Meetings Documents Register for website

Challenges (cont.)
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European
Commission

Ecodesign Preparatory Study
performed for the
European Commission

Register for meeting Contact & Consortium

Home Project summary

Project Summary R/

The Ecodesign Preparatory Study on Smart Appliances (Lot 33) has analysed the technical, economic, market an
appliances and to develop adequate policy approaches supporting such uptake.

The study deals with Task 1 to 7 of the Methodology for Energy related products (MEErP) as follows:

Scope, standards and legislation (Task 1, Chapter 1);
Market analysis (Task 2, Chapter 2);

User analysis (Task 3, Chapter 3);

Technical analysis (Task 4, Chapter 4);

Definition of Base Cases (Task 5, Chapter 5);

Design options (Task 6, Chapter 6);

Policy and Scenario analysis (Task 7, Chapter 7).

An executive summary of the project results can be downloaded here.

Throughout the study, new relevant aspects have come up which will be covered in a second phase of the Preparatory Study:

« Chargers for electric cars: technical potential and other relevant issues in the context of demand response.

%tal aspects with a view to a broad introduction of smart

« The modelling done in the framework of MEErP Task 6 and 7 will be updated with PRIMES data that recently became available, and with the EEA-countries.

« The development and assessment of policy options that were identified in the study will be further elaborated and deepened.
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COMPETITIVE BIDDING AND STABILITY ANALYSIS

IN ELECTRICITY MARKETS USING CONTROL THEORY

Main idea: applying control theory to the study of power markets

Advantages in handling effectively
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Dynamics Uncertainty
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control theory provides ways of stochastic control theory allows for
modeling the dynamics which taking into account different sources of
is intrinsic in energy markets uncertainty (wind, ...)
it is possible to develop advanced itis possible to develop bidding strategies
bidding strategies which exploit the which are optimal with respect to the
inclusion of the dynamics in the model stochastic characteristics of the market
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Day Ahead Market

DIRECT CONTROL (DC)
Individual consumption
schedules

Sub Agé!egator A
Forecast services

Smart-Energy
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Aggregated loads

INDIRECT CONTROL (IC)
Price signals
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Control and Optimization

Day Ahead Balancing
Market Market

Agagregator Indirect Control
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In Wiley Book: Control of Electric Loads
in Future Electric Energy Systems, 2015
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Day Ahead:

Stoch. Programming based on eg. Scenarios

Cost: Related to the market (one or two levels)

Direct Control:

Actuator: Power

Two-way communication

Models for DERs are needed

Constraints for the DERs (calls for state est.)

Contracts are complicated

Indirect Control:

Actuator: Price

Cost: E-MPC at low (DER) level, One-way
communication

Models for DERs are not needed

Simple 'contracts'

CITIES MPC Workshop, May 2018
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Proposed methodology
Control-based methodology
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Grey-box models for energy systems =

Intelligent systems integration using data and ICT
solutions are based on grey-box models for real-time
control of flexible energy systems
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SE-OS
Control loop design - logical drawing

| Termostat
actuator




SN-10 Smart House Controller
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SE-OS Characteristics
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‘Bidding - clearing - activation’ at higher levels
Nested sequence of systems - systems of systems
Hierarchy of optimization (or control) problems

Control principles at higher spatial/temporal resolutions

¢ e e ¢ ¢

Cloud or Fog (IoT, loS) based solutions - eg. for forecasting and
control

¢

Facilitates energy systems integration (power, gas, thermal, ...)
Allow for new players (specialized aggregators)
Simple setup for the communication and contracts

Provides a solution for all ancillary services

e e ¢ ¢

Harvest flexibility at all levels
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ENFOR Control services for Novasol
(using REST and JSON)

Flexgrid

Novasol
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Smart Energy Solutions
Some Demo Projects in CITIES:

Control of WWTP (ED, Kruger, ..)
Heat pumps (Grundfos, ENFOR, ..)
Supermarket cooling (Danfoss, TI, ..)
Summerhouses (DC, ENDK, Nyfors, ..)
Green Houses (NeoGrid, ENFOR, ....)
CHP (Dong Energy, EnergiFyn, ...)
Industrial production (several, ..)

EV (Eurisco, Enfor, ...)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
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Case study No. 1

Control of Power Consumption using
the Thermal Mass of Buildings
(Peak shaving)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee CITIES MPC Workshop, May 2018
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Aggregation (over 20 houses)
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Non-parametric Response on
Price Step Change
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Control of Energy Consumption =
Model parameters
Price-response
o estimator <

Consumption Aggregated

references Price generator Prices Price-responsive consumption

> (controller) o> consumption @ >

A
f:.sm 50,1 %
49,8 Hz 50,2
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Control performance

Considerable reduction in peak consumption
Mean daily consumption shift

14

12

Responsive
Unresponsive

Consumption [kW]
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Case study No. 2

Control of Heat Pumps for buildings
with a thermal solar collector
(minimizing cost)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee CITIES MPC Workshop, May 2018



Grundfos Case Study

Schematic of the heating sv
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# Avanced Controller

Formulation

The Economic MPC problem, with the constraints and the model,
can be summarized into the following formal formulation:

N-1
f

{uﬂF_j]l@ kZ:D € i, (4a)
Subject to  xx11 = Axx + Buy + Edyk=0,1,...,N—1 (4b)
Yo = €3y, o— 12 00N (4c)

U 2 e iy k=0,1,....,N—1 (4d)
Bllnin € Ay < Dligisy k=0.1,...;,N—1 (4e)

Ymin < Yk < Ymax k=0,1,...,N (4f)
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EMPC for heat pump with

solar collector (savings 25 pct, +6 pct energy c‘)"
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Case study No. 3

Control of heat pumps for swimming pools
(CO2 minimization)
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Live CO2 emissions of the European
electricity consumption

This shows in real-time where your electricity comes from and
how much CO2 was emitted to produce it.

We take into account electricity imports and exports #»
between countries.

Tip: Click on a country fo start exploring —

B wind power potential (m/s) =3

Like the visualization? We would love to hear your feedback!
Found bugs or have ideas? Report them here.

This project is Open Source: contribute on GitHub.

All data sources and model explanations can be found here.

B svre 20 | W T

Tomorrow

EiLike W Foliow
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Centre for IT Intelligent Ener

January 25, 2017 UTC+01:00
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Share of electricity originating from renewables in Denmark Late Nov 2016 - Start Dec 2016

70 hydro
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solar

A
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2016
Source: pro.electicitymap
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Model for Model Predictive Control
(Using lumped parameter model)

Environment : Pool area I Summerhouse
I
: |
I w :
I
| Ta : Tsh
| r—L—1 — .
TU | Ha Hsh L
: : Heating system
I
I |
I
: |
R U |
| Swimming pool : _
| Tou T, 1
. 1 Yy e Mg |
O | | I | ./ | I il | @
Tg | Hg Hw |
I
! |
: —=="Cout n :
I
! |

* Based on equivalent thermal parameters
model

* Dynamics:

dT;, 1
W = G lHW(Tout - Tm) + Qin]
dT oyt 1
= [Hw(Tm = Toue) + Hg (Tg - Tout) +Hy(Tq — Tcrut)]
dt Cout
dr,

1
E = C_ [HO(WJ (TO - Ta) + Ha(Tout - Ta) + H.s‘h(T.sh - Ta,) + QS + Qa]



How does it work? ™ Smart

Data measurement and
information gathering -

Temp A2
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How does it work? = Smart

Price based Control

Temp A1
Temp A2
ACT1
ACT2 Temp F1 Temp R1
TempF2 Temp R2
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Example: CO2-based control

ENFOR ==  SmariNet

SmartMet = D7811

Booking plan Temperature limits
D7811 Controller

Cost: co2intensity [g/lkWh]

=3 me-5m [ WaterTemperatureFonsard

me-5m [ AirTemperatura

pre [ WaterTemperatureReturmbinLimil
pre [ WaterTemperatureReturniaxLim
pre [ WaterTemperaturefReturm

32

k3

me-5m { WaterTemperatureReturn
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Temperature [*C]

Cost

Example: Price-based contro

A12979 Controller

Cost: DK1 Imbalance Price Consumption [EUR/MWh]

228 B ¥ me-sm / watertemperatureFon:
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300
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Flexibility Setup and Control
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Characteristics

Flexibility Function
(Estimator)

i

Penalty Response

r

Figure 1: A smart building is able to respond to a penalty or external control
signal.
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Flexibility Function
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E _ e a
=
-3 g_— ..................................... \_gt_‘é
5 8
— B =
% K | —— Energy demand 2 é’
E P — Penalty E;E
g - S
= 8_ '
E ¢ I I I I I 1 S
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Figure 2: The energy consumption before and after an increase in penalty. The
red line shows the normalized penalty while the black line shows the normal-
ized energy consumption. The time scale could be very short with the units be-
ing seconds or longer with units of hours. At time 2.5 the penalty is increased,
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FF for three buildings =
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Figure 5: The Flexibility Function for three different buildings.
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Penalty Function (examples) =

e Real time CO,. If the real time (marginal) CO, emis-
sion related to the actual electricity production is used as
penalty, then, a smart building will minimize the total car-
bon emission related to the power consumption. Hence,
the building will be emission efficient.

e Real time price. If a real time price 1s used as penalty, the
objective 1s obviously to minimize the total cost. Hence,
the building is cost efficient.

e Constant. If a constant penalty is used, then, the con-
trollers would simply minimize the total energy consump-
tion. The smart building 1s, then, energy efficient.

ub CITIES
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Smart Grid Application =

Peak shaving,

voltage conbrol, Energy efficient, Emission efficient, Cost efficient
Balancing. ... depending on selected Penalty Signal

Congestion managemeant,

depending an Penalty Generator L Flexibility Function
(Estimator)

Figure 8: Smart buildings and penalty signals.
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Procedure for calc. Flex. Index =

o
for energy, price and emission based flexibility char.
The test consists of the following steps:
1. Let A: be the price of electricity at time ¢.
2. Simulate the control of the building without considering the price, and let
uf be the electricity consumption at time ¢.
3. Simulate the control of the building considering the price, and let u} be
the electricity consumption at time ¢.
4. The total operation cost of the price-ignorant control is given by
0 _ TN 0
5. Similarly the operation cost of the price-aware control is given by
ct =N Al
t=0 5
6. 1 — g—; is the result of the test, giving us the fractional amount of saved
money.
This test is inspired by minimizing total costs for varying electricity prices,
but in general A; could just represent ones desire to reduce electricity demand
at time f. B

> CITIES

~ Centre for IT Intelligent Energy Systems CITIES MPC Workshop, May 2018
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Flexibility without
framework conditions
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Figure 7: Reference scenarios of penalty signals related to ramping or peak
issues as well as the integration of wind and solar power.
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Flexibility Index =

Table 2: Flexibility Index for each of the buildings based reference penalty
signals representing wind, solar and ramp problems.

Wind (%) Solar (%) Ramp (%)
Building 1 | 36.9 10.9 5.2
Building 2 | 7.2 24.0 11.1
Building 3 | 17.9 35.6 67.5

> CITIES

= Centre for IT Intelligent Energy Systems CITIES MPC workshop' May 2018
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@ A procedure for data intelligent control of power load, using the Smart-
Energy OS (SE-OS) setup, is suggested.

o The SE-OS controllers can focus on

Peak Shaving

Smart Grid demand (like ancillary services needs, ...)
Energy Efficiency

Cost Minimization

* % % ¥ %

Emission Efficiency

o We have demonstrated a large potential in Demand Response in Buildings.
Automatic solutions and end-user focus are important

@ We have suggested a method for characterizing the energy flexibility of
buildings which facilitates smart grid applications

o We see large problems with the tax and tariff structures in many countries
(eg. Denmark).

> CITIES
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For more information ...
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www.smart-cities-centre.org
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