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George Box:

All models are wrong - but some are useful
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Modeling made simple

Suppose we have a time series of data.:

X}=X, X, 0, X, ...

t

The purpose of any modeling is to find a nonlinear
function h({X}) such that

h({X.}) = €,

Where {€ } Is white noise — ie. no autocorrelation
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Part 1
A single sensor (smart meter)

Ll

@ Smart Meters and data
splitting

@ Smart Meters and
Thermal Characteristics

> Problem setting
= Simple tool
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Case Study No. 1

Split of total readings into space heating and domestic
hot water using data from smart meters
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Data separation principle

House Characteristic
e.g.size,insulating power, solar absorption

Heating Consumption

Occupants Characteristic
e.g.open/close windows, turn up/down the heating,
night-time drop

Raw Data

Hot Water Consumption
e.g.shower, dishwashing

DTU-Tsinghua Workshop,
Beijing, Junel 2017



Data

* 10 min averages from a number of houses

House 1 House 2 ¥ House3 House 4

Year build 1963 Year build 1937 Year build 1963 Year build 1967
House size 119 m? House size 86 m?2 House size 140 m?2 House size 137 m?2
Occupants 2 Occupants 2 Occupants 2 Occupants 5
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Holiday period

B House: 2, Occupants: 2

Consumption [MJ/h]

[ [ [ [ [ [
Mar 01 Mar D6 Mar 12 Mar 18 Mar 24 Mar 30
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Robust Polynomial Kernel

To improve the kernel method

Rewrite the kernel smoother to a Least Square Problem

k{r — X}

N
1 2
arg min — Z wy(x) (Y, —60)° we(x) = —— -
o1y s=1 N Zs:l }l.?-{."i'_f o ‘X‘i}

Make the method robust by replacing (Y, — H)E with

1 9 -
=~ if [e] <~
.IGHIII)FI‘(E) =47 ) . co=Y,— 0
le] — 5 if |g] >~

2

Make the method polynomial by replacing #  with

P =0+ 01(X; — o) + 0o(X; — 2)°
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Robust Polynomial Kernel
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Case Study No. 2

Identification of Thermal
Performance using
Smart Meter Data




Characterization Smart Meter Data

@ Energy labelling
@ Estimation of UA and gA values
@ Estimation of energy signature

@ Estimation of dynamic characteristics
@ Estimation of time constants



Simple estimation of UA-values

@ Consider the following model (t=day No.)
estimated by kernel-smoothing:

Qe = Qo(t)+ col(t)(Tit— Tor)+cr(t)(Tit—1— Tar—1) (1)

2 The estimated UA-value Is

Fal

UA(t) = () + &(t) 2)

a2 With more involved (but similar models) also gA
and wA values can be stimated
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Results

UA oua gA™ wAp™ wAG" wAy™ T
W/°C W W/°C W/°C W/C °C

4218598 211.8 104 597.0 11.0 3.3 8.9 23.6
4218600  98.7 10.8  -96.2 23.6 10.1 13.0 22.3
4381449 228.2 12.6 1012.3 29.8 42.8 39.7 194

4711160 1554 6.3 5188 14.5 4.4 9.1 225
4711176  178.5 7.3 800.0 1.9 -7.6 8.5 264
4836681 155.3 81  5H91.0 39.5 28.0 214 23.5

4836722 236.0 17.7 1578.3 4.3 3.3 18.9 23.5
4986050 159.6 10.7  715.7 10.2 7.5 7.2 208
5069378 1448 104 87.6 3.7 1.6 17.3 21.8
5069913 2078 9.0 962.5 3.7 8.6 10.6 22.6
5107720 189.4 154  657.7 41.4 29.4 16.5 21.0

Notice: Still some issues with negative values but often they
are not significiant.
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Perspectives for using
Smart Meters

# Reliable Energy Signature.
@ Energy Labelling

# Time Constants (eg for night set-
back)

@ Proposals for Energy Savings:

@ Replace the windows?
@ Put more insulation on the roof?

@ |s the house too untight?

@ Optimized Control

@ Integration of Solar and Wind
Power using DSM
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Part 2
Several sensors

@ Introduction to Grey-Box
Modelling (a continuous-
discrete state space
models)

@ A model for the thermal
characteristics of a small
office building

@ Models for control
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Introduction to Grey-Box modelling
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The grey box model

Drift term

X, dt +

h{ X, ug, 1. 0

/\

| Diffusion term

L

Notation:
X;: State vanables
;.  Input variables
f:  Parameters
Y.  Output variables
t: Time
wy:  Standard Wiener process

White noise process with |

V (0, S)

System equation

Observation equation

Observation noise

=
—]
(—

i



Grey-box modelling concept

Deterministic
equations

Physical
knowledge

Detailed
submodels

White Grey Black

Prior
Knowledge

@ Combines prior physical knowledge with information in data

» Equations and parameters are physically interpretable
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Forecasting and Simulation

Grey-Box models are well suited for ...

* One-step forecasts

* K-step forecasts

* Simulations

+ Control

¢ ... of both observed and hidden states.

» It provides a framework for pinpointing model deficiencies
— like:
# Time-tracking of unexplained variations in e.g. parameters
+ Missing (differential) equations
+ Missing functional relations
* Lack of proper description of the uncertainty
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Case study

Model for the thermal characteristics
of a small office building
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TEST CASE: ONE FLOORED 120 M? BUILDING

Find the best model describing the
heat dynamics of this building

([11, [4])
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DATA

Measurements of:

yt Indoor air
temperature

T, Ambient
temperature

@y, Heat input

o, Global
irradiance
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SELECTION PROCEDURE

Simplest model

Interior i Heater i solar i Envelope E Ambient
T ! ! ! fia
- e L E i E Al E E I
[terative procedure using o= in(@ (D O
statistical tests ' S '
= y
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EVALUATE THE SIMPLEST MODEL

Inputs and residuals

: M W Iﬁ M M\ﬂ% # W i”! A iy
_____ JJmumu””“””*“1

........................
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Inputs and residuals
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GREY-BOX MODELLING

Continuous time models (grey-box: stochastic state-space model)

States = Fun, (States, Inputs) + Fun; (Inputs) - SystemError
Measurements = Fungs(States, Inputs) + Funy (Inputs) - MeasurementError

@ Used for buﬂdings (single- and multi-zone), walls, systems (hot water
tank, integrated PV, heat pumpts, heat exchanger, solar collectors, ...)

@ Formulate the model based on physical knowledge

@ Maximum likelihood estimation

(we have the entire statistical framework available)

@ Description of the system noise is part of the model provides
some very useful possibilities

(e.g. control the weight of data in the estimation depending on input signals)

@ Software, for example our R package CTSM-R !

_ Inttp://ctsm.info
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Part 3
Special Data (eg Non-Gaussian)

Identification of Occupant Behavior

@ Use of CO2
measurements to model
occupant behavior in
summer houses
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Summer houses represent a special
challenge

i

® Large variation in the number of people present in the
house

® Power Grids in summer house areas represent a special
problem for some DSOs

® Time series of CO2 measurements are the key to the
classification

31
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The Model Space

6 ~ f(ﬁﬂxedjt?"') —|‘g(Urand0m;- t;"') (13)

dX; ~ Dynamical model (9) (1b)
Yt(l) — Electrical consumption
Y/?) = Noise (indoor)
1c
Y®) = CO, (indoor) (Lc)
@ 0O parameter vector for population/hierarchical model
@ Time, weather, demographics
@ dX: state vector described by some dynamical model depending on @
@ People, consumption, windows 07U
@ Y's: Observed measurements related to occupancy behavior, including -
A
A

measurements inside and outside the building and smart metering data



Hidden Markov Model

te N (2)

p(Xe| Xe—1) = p(Xe| XD,
te N (3)

p(Ye|Xe) = p(Ye| X, YE=1)),

DT

Figure: Directed graph of basic HMM. The index denotes time.

 —

i



Markov Chains

Discrete state vector at time t, X;, with m states.

Transition probability
p(Xt :j|Xt—s — ".)

One-step transition probability
Yij,t = P(Xe = j| Xt—1 = 1)

One-step transition probability matrix from time t — 1 to t

Y11t 0 Yimt
M = ' (6)
Tml,t " Ymm.t EIE

where the row must sum to 1.



Homogeneous Hidden Markov Model

Setting

g =h(COq4)
P(It\ﬂ?t—lj ~T

p(yt|zt) MNF[M.,JE) fori=1.2,.-.m

Note that there is no time dependence in the transition probabilities in the homogen case.

36
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Forecast pseudo-residual

Sample Quantiles
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Inhomogeneous Hidden Markov Model

Setting

g =h(COqy)
p(zy|zi—1) ~ T
Py |:) "”:"“ﬂ'r(ﬁi-aﬂ?] fori=1,2,---,m

Note that there is time dependence in the transition probabilities in the inhomogen case.

42
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Inhomogeneous Markov-switching with -
auto-dependent observations

it
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Fipure 8.10: Directed graph of Markov switching AR(1).
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Inhomogen Markov-switching AR(1)

Setting

Ut = ]I(COM)
plzg|zi—1) ~ Ty

p(:’yi‘ﬂfi!yt—l) N-NF(C'E'- —|_(.=r3?::‘iﬁ—l ) US) for i = L2 ;M

Note that there is time dependence in the transition probabilities in the inhomogen case.
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i

Interpretation of the states

State 3: Outdoor interaction

State 4: Presence (high activity)

State 5: Presence (long term, low activity)
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Forecast Pseudo-residual
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Figure 8.11: Model diagnostics of the final model.
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Figure 8.16: Transition probabilities over the day of the final model. The lower right plot is the stationary
distribution.
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Stationary Distribution
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Figure 8.17: Profile of the states over the course of the day. Le. Stacked stationary probabilities over
the course of the day of the final model.

Some conclusions;

That the low activity state 5 is not very likely from 10 am to 11 pm.
The highest activity is seen in the late afternoon.
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Thanks ...

e For more information
Www.ctsm.info
www.henrikmadsen.org

www.smart-cities-centre.org

e ...0r contact

- Henrik Madsen (DTU Compute)
hmad@dtu.dk

Acknowledgement CITIES (DSF 1305-00027B)

DTU-Tsinghua Workshop,
Beijing, Junel 2017


http://www.henrikmadsen.org/
http://www.smart-cities-centre.org/
mailto:hmad@dtu.dk

	DIACON
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	PowerPoint Presentation
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	The grey box model
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Summer houses represent a special challenge
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Homogen Hidden Markov Model
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Inhomogen Hidden Markov Model
	Inhomogen Markov-switching with auto-dependent observations
	Inhomogen Markov-switching AR(1)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

