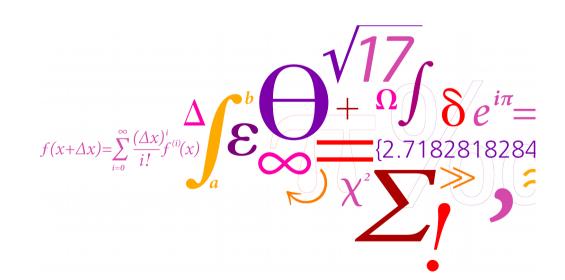
Identification of stochastic models for describing the thermal performance of buildings

DTU-Tsinghua Workshop on Energy, Technology and Behaviour in Buildings

Beijing, June 2017

Henrik Madsen

www.henrikmadsen.org



George Box:

All models are wrong – but some are useful

Modeling made simple

Suppose we have a time series of data:

$$\{X_t\} = X_1, X_2, \dots, X_t, \dots$$

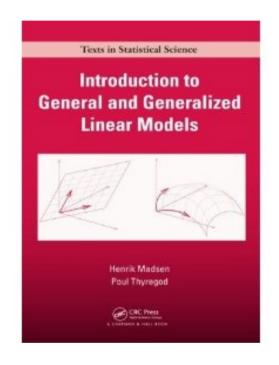
The purpose of any modeling is to find a nonlinear function $h({X_{\downarrow}})$ such that

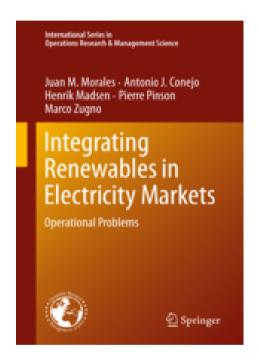
$$h({X_t}) = \varepsilon_t$$

Where $\{\epsilon_{r}\}$ is white noise – ie. no autocorrelation

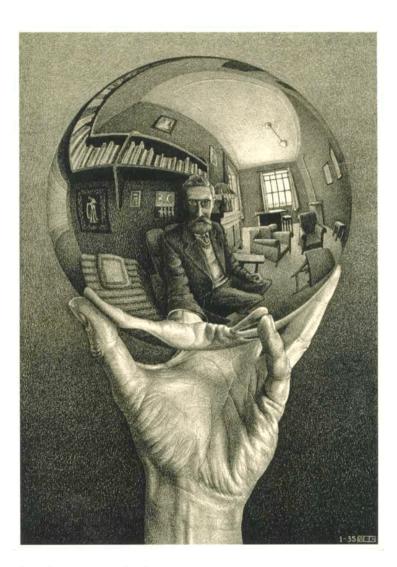
Some 'randomly picked' books on modeling





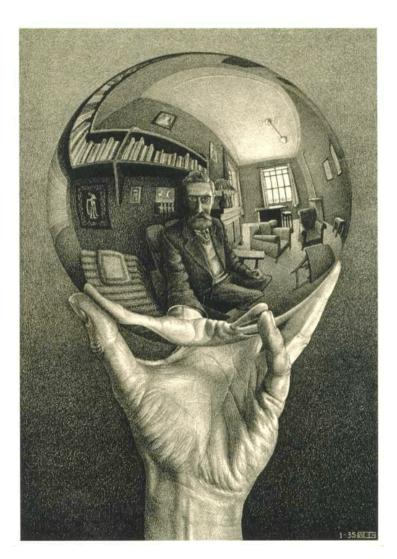


Contents



- 1. A single sensor (a smart meter)
- 2. Several sensors (and grey-box modelling)
- 3. Special sensors (model for occupant behavior)

Part 1 A single sensor (smart meter)

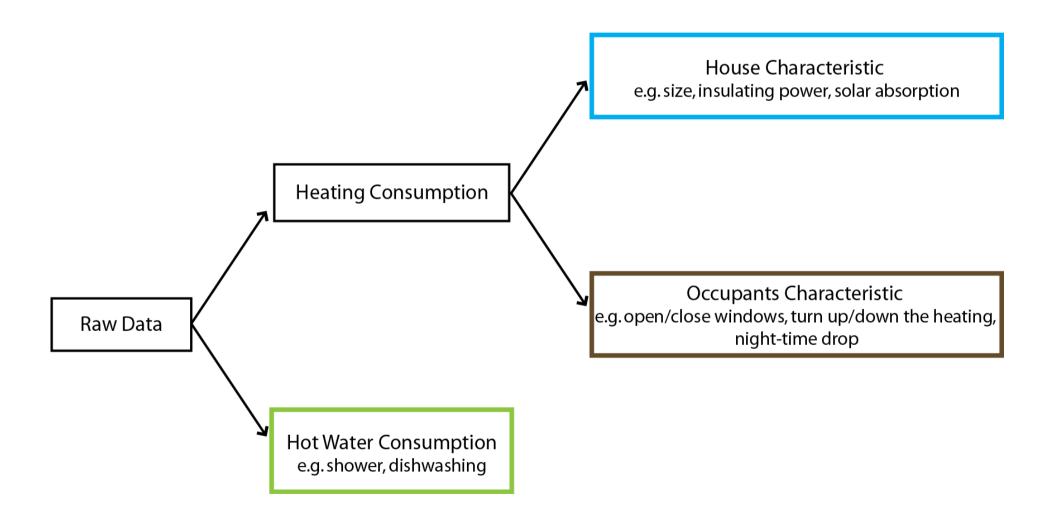


- Smart Meters and data splitting
- Smart Meters and Thermal Characteristics
 - Problem setting
 - Simple tool

Case Study No. 1

Split of total readings into space heating and domestic hot water using data from smart meters

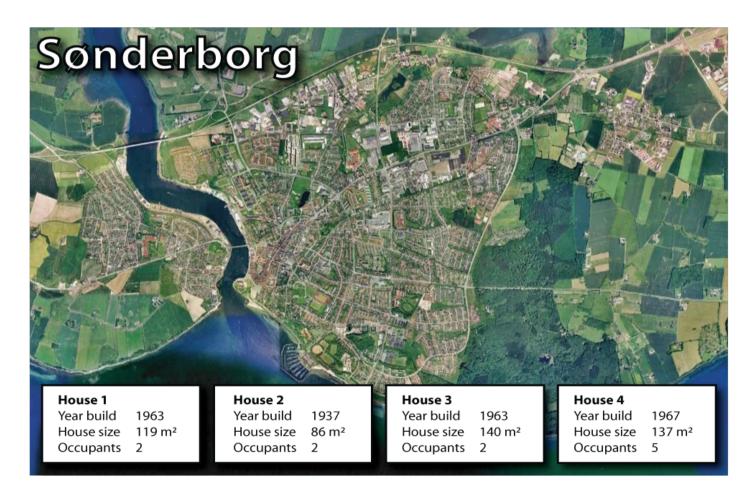
Data separation principle



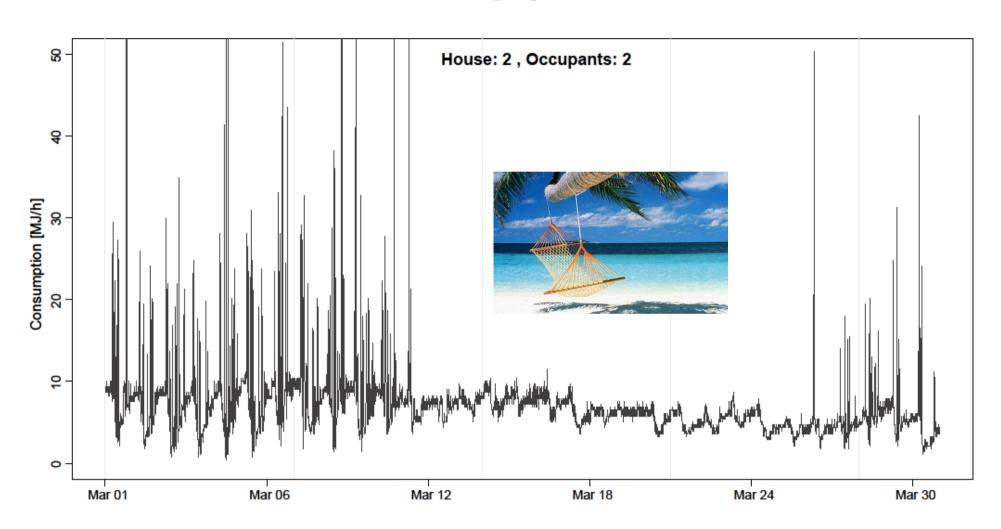
DTU-Tsinghua Workshop, Beijing, Junel 2017

Data

• 10 min averages from a number of houses



Holiday period



Robust Polynomial Kernel

To improve the kernel method

Rewrite the kernel smoother to a Least Square Problem

$$\arg\min_{\theta} \frac{1}{N} \sum_{s=1}^{N} w_s(x) (Y_s - \theta)^2 \qquad w_s(x) = \frac{k\{x - X_s\}}{\frac{1}{N} \sum_{s=1}^{N} k\{x - X_s\}}$$

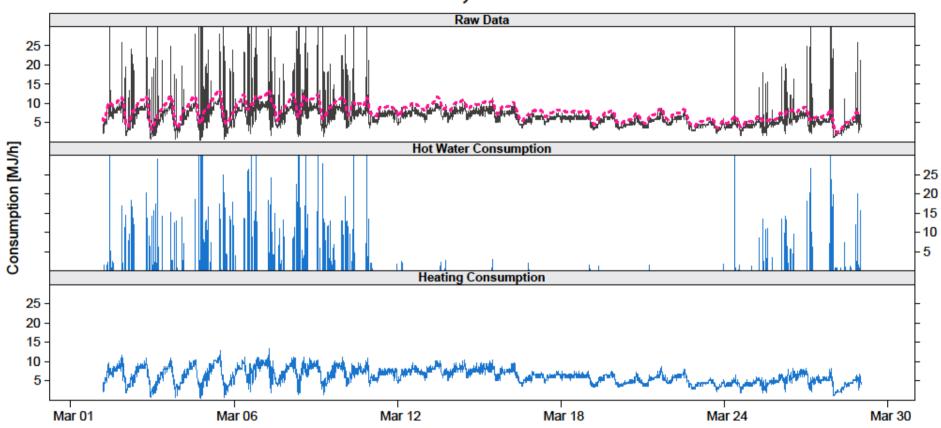
Make the method robust by replacing $\left(Y_s- heta
ight)^2$ with

$$\rho_{\text{Huber}}(\varepsilon) = \begin{cases} \frac{1}{2\gamma} \varepsilon^2 & \text{if } |\varepsilon| \le \gamma \\ |\varepsilon| - \frac{1}{2}\gamma & \text{if } |\varepsilon| > \gamma \end{cases} \qquad \varepsilon_s = Y_s - \theta$$

Make the method polynomial by replacing $\, heta\,\,$ with

$$P_s = \theta_0 + \theta_1 (X_t - x) + \theta_2 (X_t - x)^2$$

Robust Polynomial Kernel

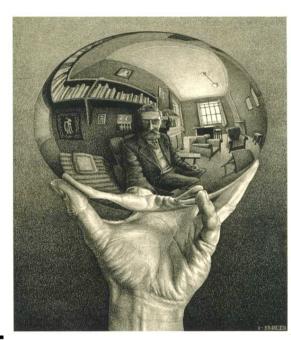


Case Study No. 2

Identification of Thermal Performance using Smart Meter Data

Characterization Smart Meter Data

- Energy labelling
- Estimation of UA and gA values
- Estimation of energy signature
- Estimation of dynamic characteristics
- Estimation of time constants



Simple estimation of UA-values

Consider the following model (t=day No.) estimated by kernel-smoothing:

$$Q_t = Q_0(t) + c_0(t)(T_{i,t} - T_{a,t}) + c_1(t)(T_{i,t-1} - T_{a,t-1})$$
 (1)

The estimated UA-value is

$$\hat{UA}(t) = \hat{c}_o(t) + \hat{c}_1(t) \tag{2}$$

With more involved (but similar models) also gA and wA values can be stimated

Results

	UA	$\sigma_{ m UA}$	gA^{max}	wA_E^{max}	wA_S^{max}	wA_W^{max}	T_i
	$W/^{\circ}C$		W	$\mathrm{W}/^{\circ}\mathrm{C}$	$W/^{\circ}C$	$W/^{\circ}C$	$^{\circ}\mathrm{C}$
4218598	211.8	10.4	597.0	11.0	3.3	8.9	23.6
4218600	98.7	10.8	-96.2	23.6	10.1	13.0	22.3
4381449	228.2	12.6	1012.3	29.8	42.8	39.7	19.4
4711160	155.4	6.3	518.8	14.5	4.4	9.1	22.5
4711176	178.5	7.3	800.0	1.9	-7.6	8.5	26.4
4836681	155.3	8.1	591.0	39.5	28.0	21.4	23.5
4836722	236.0	17.7	1578.3	4.3	3.3	18.9	23.5
4986050	159.6	10.7	715.7	10.2	7.5	7.2	20.8
5069878	144.8	10.4	87.6	3.7	1.6	17.3	21.8
5069913	207.8	9.0	962.5	3.7	8.6	10.6	22.6
5107720	189.4	15.4	657.7	41.4	29.4	16.5	21.0

Notice: Still some issues with negative values but often they are not significant.

Perspectives for using Smart Meters

- Reliable Energy Signature.
- Energy Labelling
- Time Constants (eg for night setback)
- Proposals for Energy Savings:
 - Replace the windows?
 - Put more insulation on the roof?
 - Is the house too untight?
 - **.....**
- Optimized Control
- Integration of Solar and Wind Power using DSM

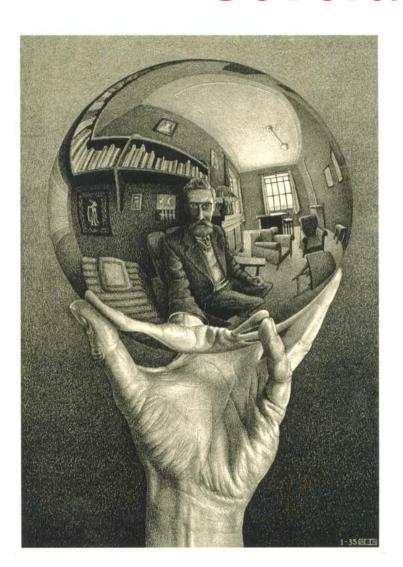
EnergyNow 466 Watte Cost Ram 28 Down 56 12

Book 12 Cost 24 hours

D9 14 2 oc Trans

Scottan and Scottare

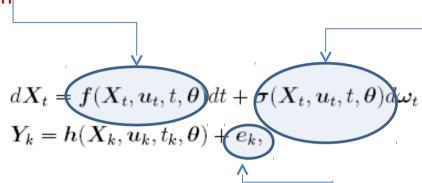
Part 2 Several sensors



- Introduction to Grey-Box Modelling (a continuousdiscrete state space models)
- A model for the thermal characteristics of a small office building
- Models for control

Introduction to Grey-Box modelling

The grey box model



Diffusion term

System equation

Observation equation

Observation noise

Notation:

 X_t : State variables

 u_t : Input variables

 θ : Parameters

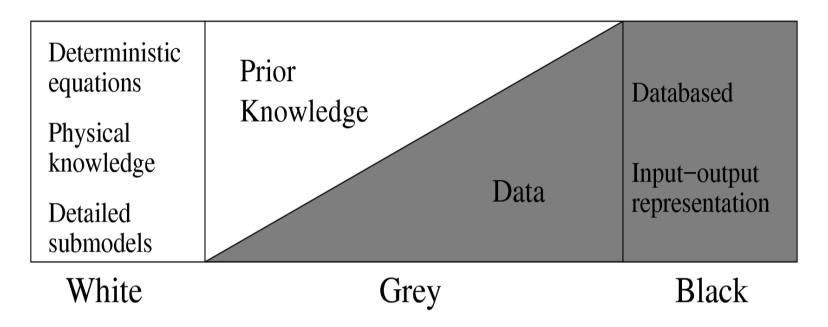
 Y_k : Output variables

t: Time

 ω_t : Standard Wiener process

 e_k : White noise process with N(0, S)

Grey-box modelling concept



- Combines prior physical knowledge with information in data
- Equations and parameters are physically interpretable

Forecasting and Simulation

Grey-Box models are well suited for ...

- One-step forecasts
- K-step forecasts
- Simulations
- Control
- ... of both observed and hidden states.

It provides a framework for pinpointing model deficiencies

- like:
 - Time-tracking of unexplained variations in e.g. parameters
 - Missing (differential) equations
 - Missing functional relations
 - Lack of proper description of the uncertainty

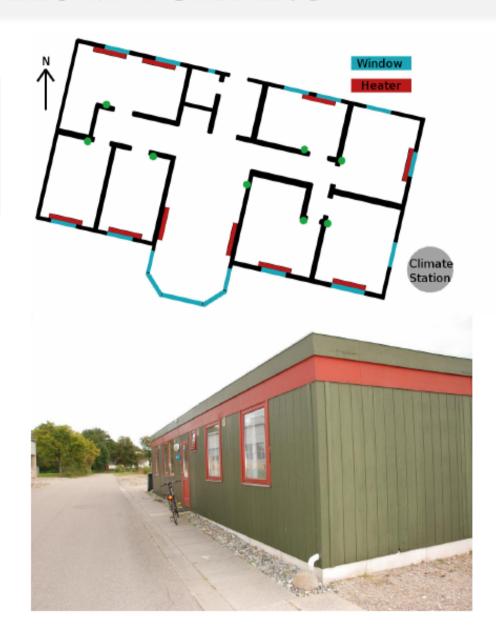
Case study

Model for the thermal characteristics of a small office building

Test case: One floored 120 m² building

Objective

Find the best model describing the heat dynamics of this building ([1], [4])

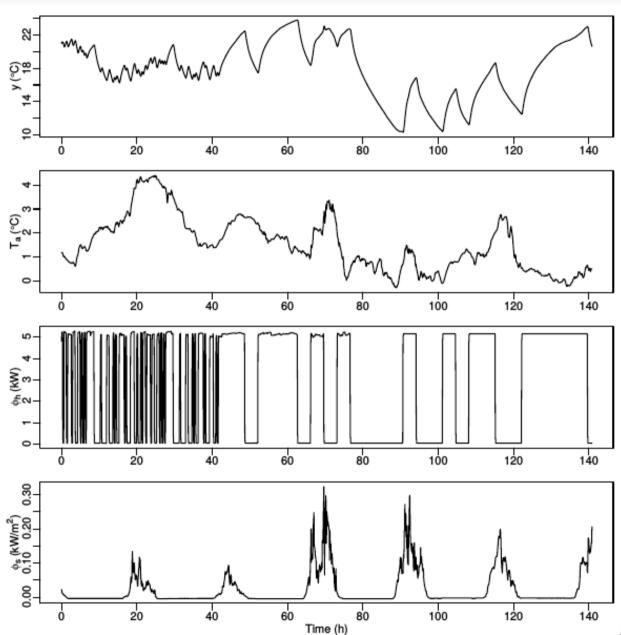


DTU-Tsinghua Workshop, Beijing, Junel 2017

DATA

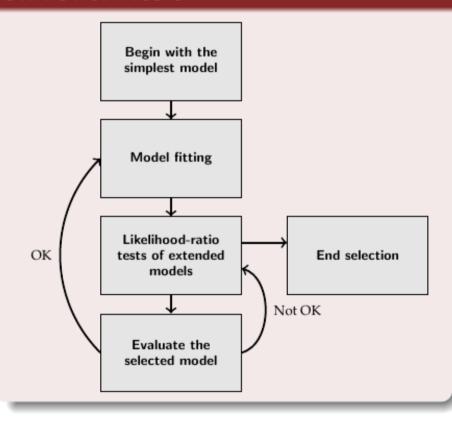
Measurements of:

- y_t Indoor air temperature
- T_a Ambient temperature
- Φ_h Heat input
- Φ_s Global irradiance

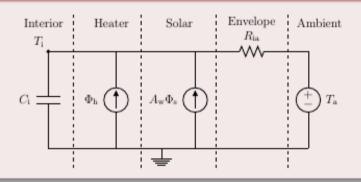


SELECTION PROCEDURE

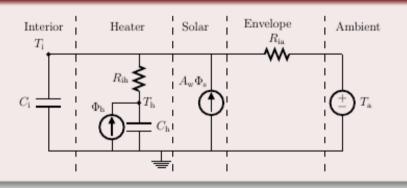
Iterative procedure using statistical tests



Simplest model



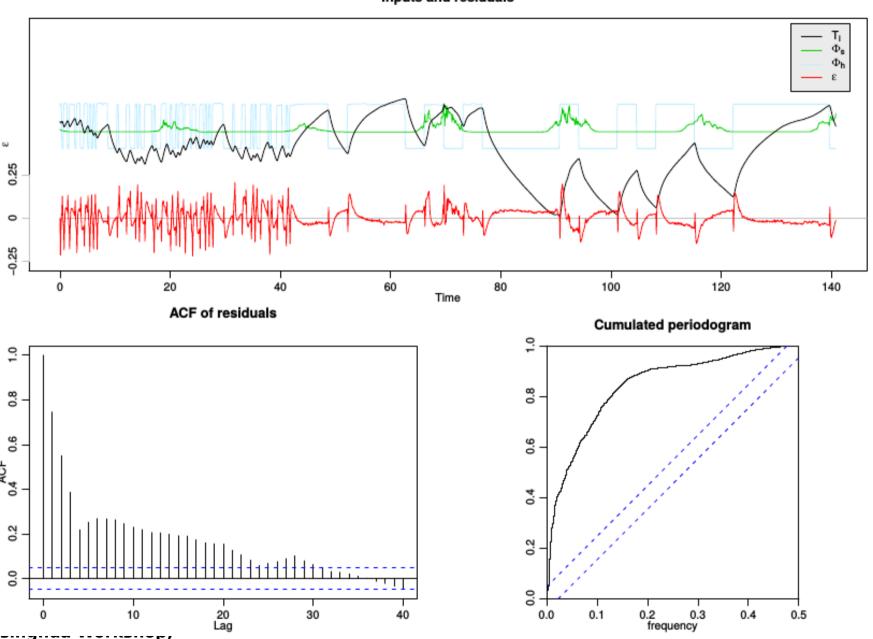
First extension: heater part



Start $l(\theta; \mathcal{Y}_N)$ m	Model _{Ti} 2482.6 6			
1	$Model_{TiTe}$	$Model_{TiTm}$	$Model_{TiTs}$	$Model_{TiTh}$
$l(\theta; \mathcal{Y}_N)$	3628.0	3639.4	3884.4	3911.1
m	10	10	10	10

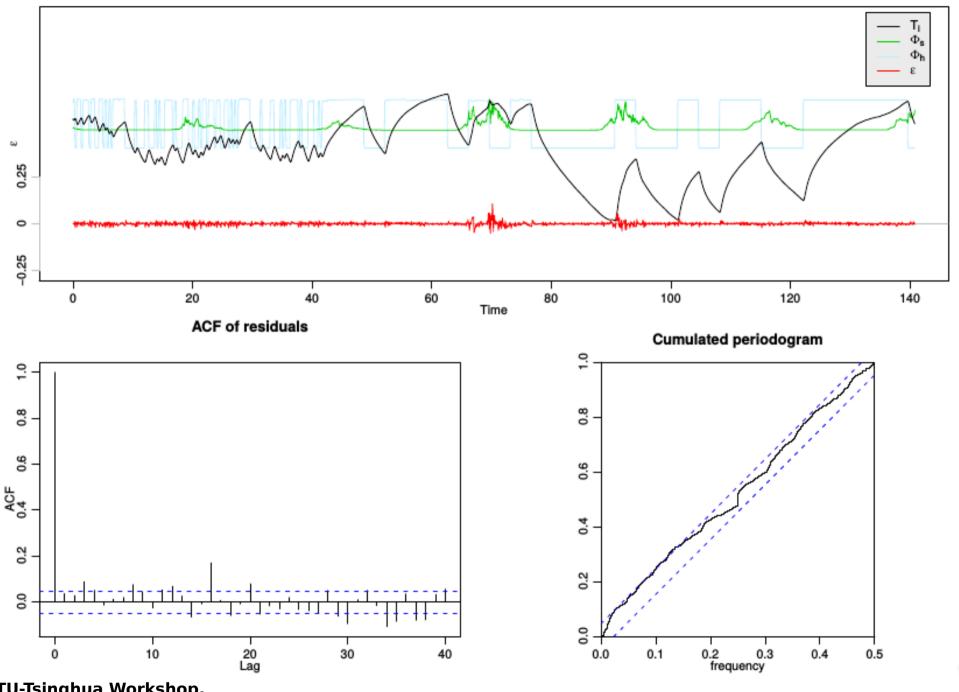
EVALUATE THE SIMPLEST MODEL





Beijing, Junel 2017

Inputs and residuals



DTU-Tsinghua Workshop, Beijing, Junel 2017

GREY-BOX MODELLING

Continuous time models (grey-box: stochastic state-space model)

```
States = Fun_1(States, Inputs) + Fun_2(Inputs) \cdot SystemError
Measurements = Fun_3(States, Inputs) + Fun_4(Inputs) \cdot MeasurementError
```

- Used for buildings (single- and multi-zone), walls, systems (hot water tank, integrated PV, heat pumpts, heat exchanger, solar collectors, ...)
- Formulate the model based on physical knowledge
- Maximum likelihood estimation (we have the entire statistical framework available)
- Description of the system noise is part of the model provides some very useful possibilities (e.g. control the weight of data in the estimation depending on input signals)
- Software, for example our R package CTSM-R¹

¹http://ctsm.info DTU-Tsinghua Workshop,

Part 3 Special Data (eg Non-Gaussian)

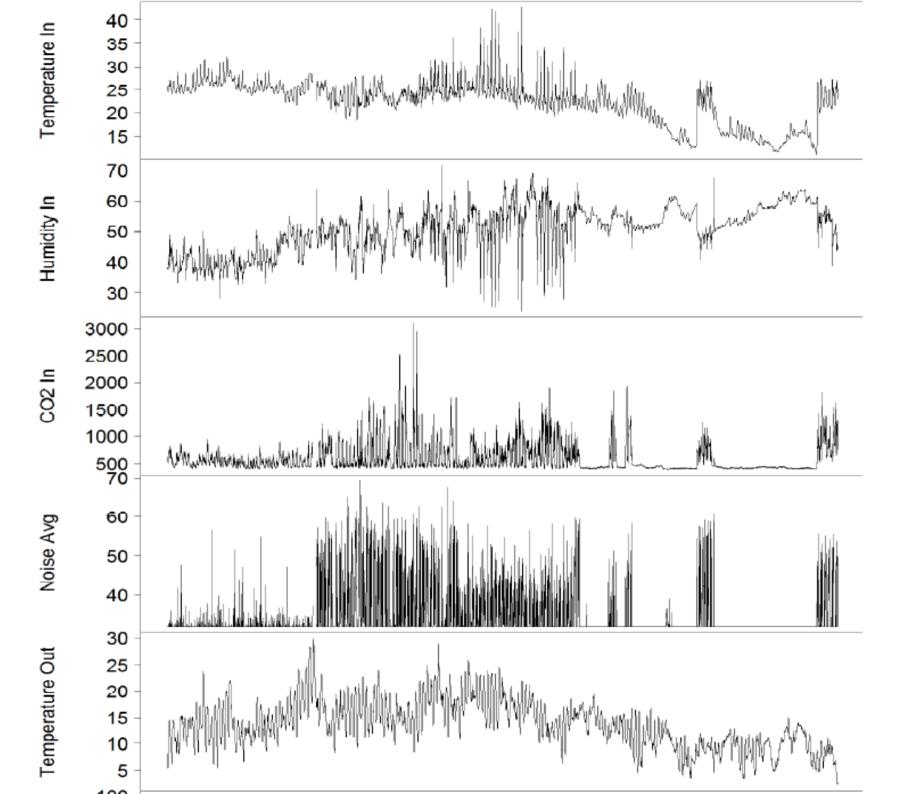
Identification of Occupant Behavior



Use of CO2
 measurements to model
 occupant behavior in
 summer houses

Summer houses represent a special challenge

- Large variation in the number of people present in the house
- Power Grids in summer house areas represent a special problem for some DSOs
- Time series of CO2 measurements are the key to the classification



The Model Space

$$oldsymbol{ heta} \sim f\left(eta_{\mathsf{fixed}}, t, \cdots\right) + g\left(U_{\mathsf{random}}, t, \cdots\right)$$
 (1a)

$$doldsymbol{X}_t \sim ext{Dynamical model}\left(oldsymbol{ heta}
ight)$$
 (1b)

$$Y_t^{(1)} = \text{Electrical consumption}$$

$$Y_t^{(2)} = \text{Noise (indoor)}$$

 $Y_t^{(3)} = \text{CO}_2 \text{ (indoor)}$ (1c)

:

- ullet parameter vector for population/hierarchical model
 - Time, weather, demographics
- ullet d $oldsymbol{X}_t$ state vector described by some dynamical model depending on $oldsymbol{ heta}$
 - People, consumption, windows
- Y's: Observed measurements related to occupancy behavior, including measurements inside and outside the building and smart metering data

Hidden Markov Model

First Order Markov Property

$$p(X_t|X_{t-1}) = p(X_t|\mathcal{X}^{(t-1)}), \quad t \in \mathbb{N}$$
 (2)

$$p(Y_t|X_t) = p(Y_t|\mathcal{X}^{(t)}, \mathcal{Y}^{(t-1)}), \quad t \in \mathbb{N}$$
(3)

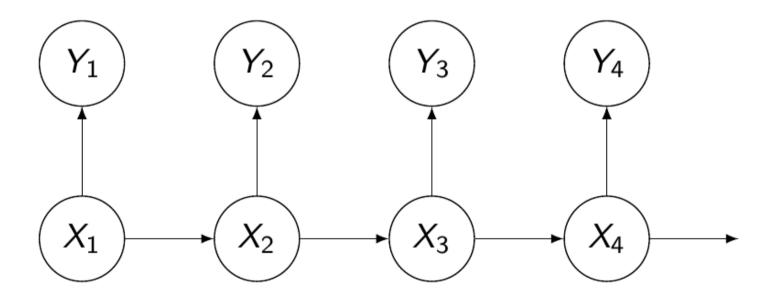


Figure: Directed graph of basic HMM. The index denotes time.

Markov Chains

Discrete state vector at time t, X_t , with m states.

Transition probability

$$p(X_t = j | X_{t-s} = i) \tag{4}$$

One-step transition probability

$$\gamma_{ij,t} = p(X_t = j | X_{t-1} = i) \tag{5}$$

One-step transition probability matrix from time t-1 to t

$$\Gamma_{t} = \begin{pmatrix} \gamma_{11,t} & \cdots & \gamma_{1m,t} \\ \vdots & \ddots & \vdots \\ \gamma_{m1,t} & \cdots & \gamma_{mm,t} \end{pmatrix} \tag{6}$$

where the row must sum to 1.

Homogeneous Hidden Markov Model

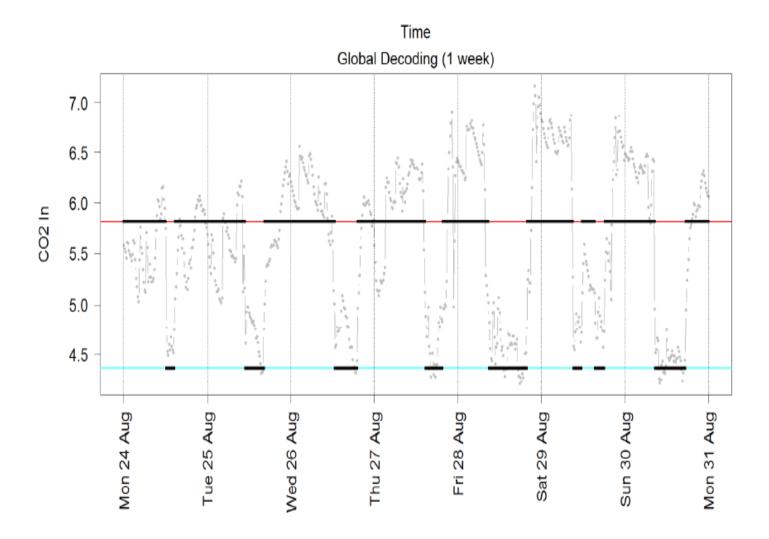
Setting

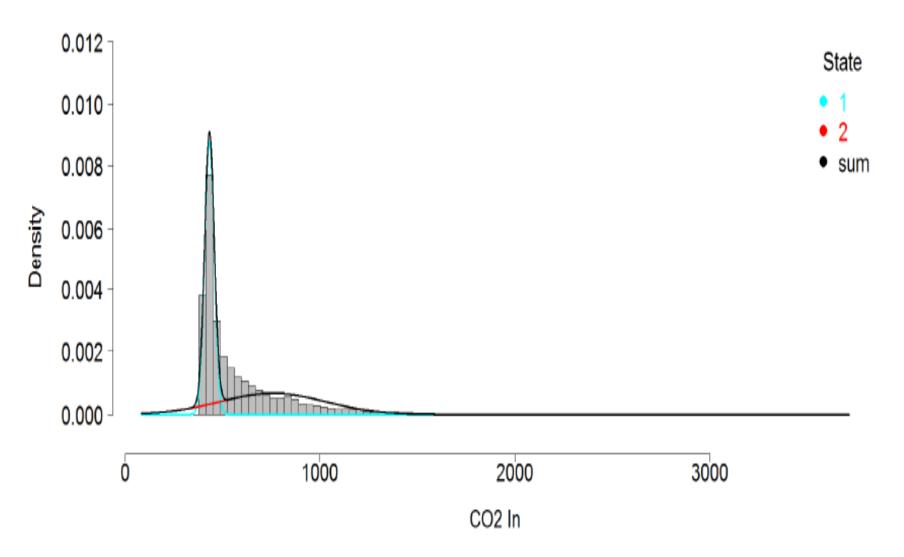
$$y_t = h(CO_{2,t})$$

$$p(x_t|x_{t-1}) \sim \Gamma$$

$$p(y_t|x_t) \sim \mathcal{N}(\mu_i, \sigma_i^2) \text{ for } i = 1, 2, \dots, m$$

Note that there is no time dependence in the transition probabilities in the homogen case.





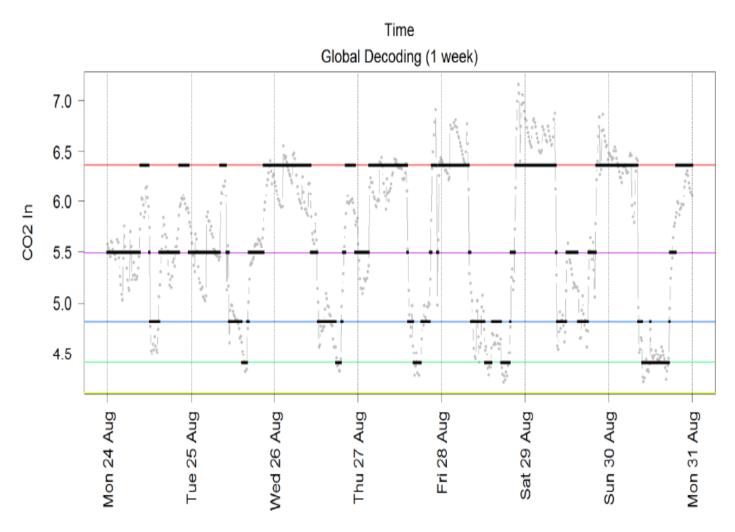
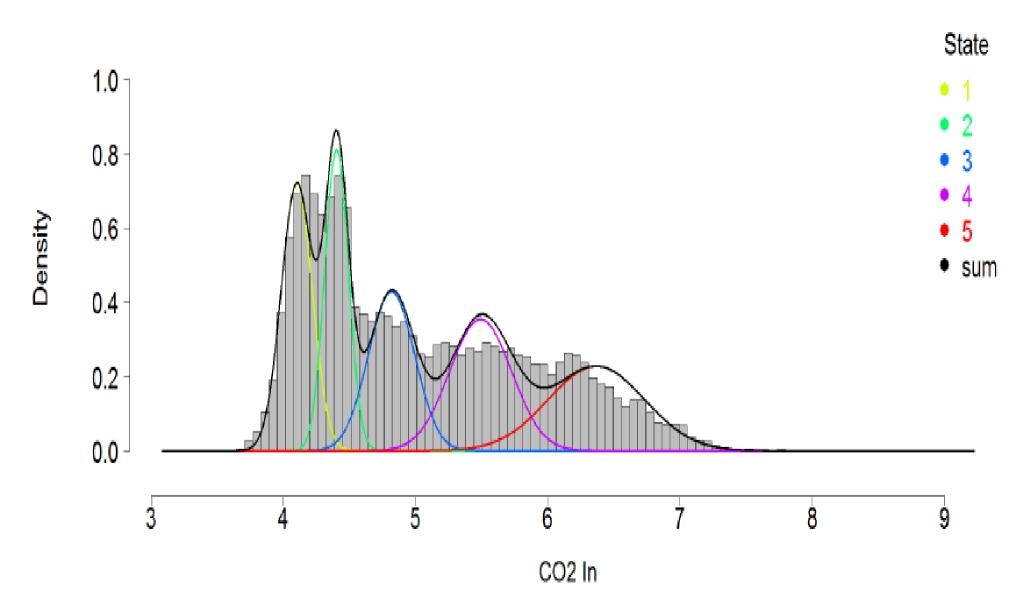
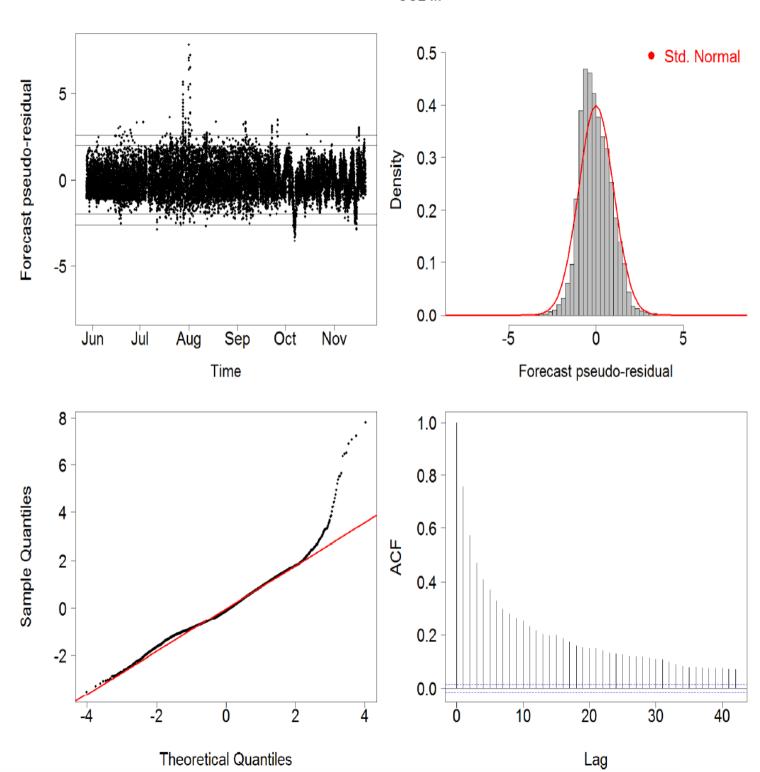


Figure 8.7: Global Decoding of the HMM (log CO_2) with 5 states.





Inhomogeneous Hidden Markov Model

Setting

$$\begin{aligned} y_t &= h(CO_{2,t}) \\ p(x_t|x_{t-1}) &\sim \Gamma_t \\ p(y_t|x_t) &\sim \mathcal{N}\left(\mu_i, \sigma_i^2\right) \text{ for } i = 1, 2, \cdots, m \end{aligned}$$

Note that there is time dependence in the transition probabilities in the inhomogen case.

Inhomogeneous Markov-switching with auto-dependent observations

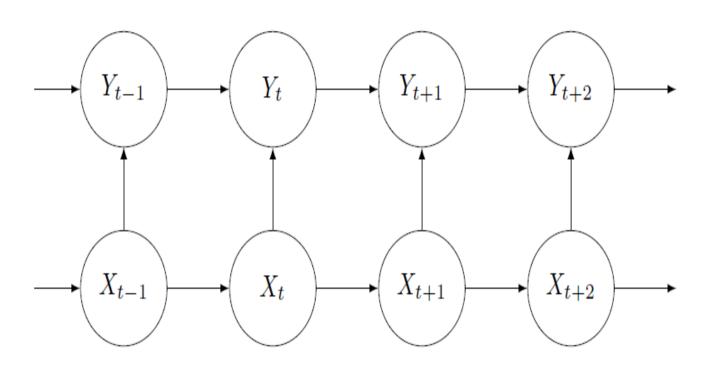


Figure 8.10: Directed graph of Markov switching AR(1).

Inhomogen Markov-switching AR(1)

Setting

$$y_t = h(CO_{2,t})$$

$$p(x_t|x_{t-1}) \sim \Gamma_t$$

$$p(y_t|x_t, y_{t-1}) \sim \mathcal{N}\left(c_i + \phi_i y_{t-1}, \sigma_i^2\right) \text{ for } i = 1, 2, \dots, m$$

Note that there is time dependence in the transition probabilities in the inhomogen case.

Interpretation of the states

- State 1: Absence or sleeping
- State 2: Long term absence
- State 3: Outdoor interaction
- State 4: Presence (high activity)
- State 5: Presence (long term, low activity)

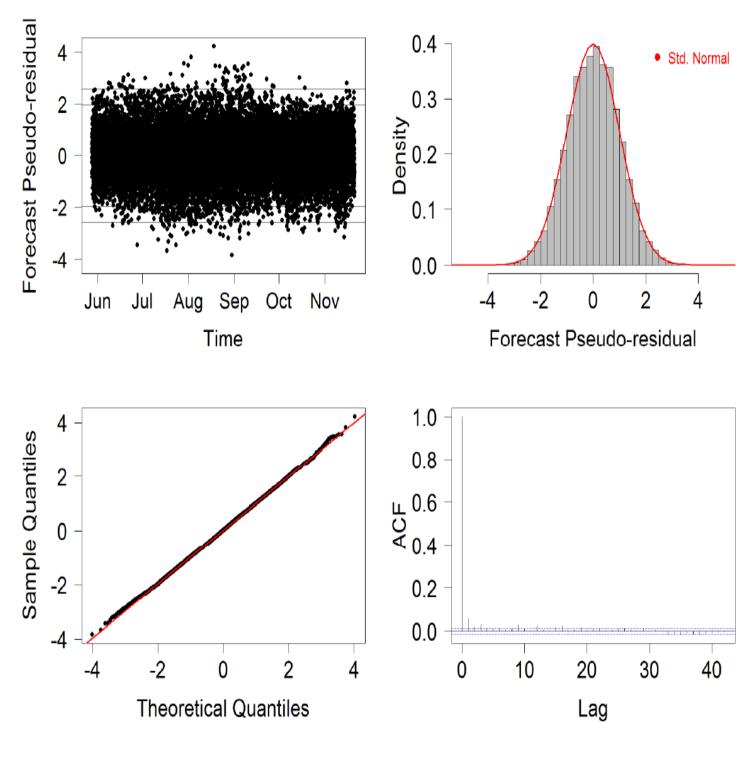


Figure 8.11: Model diagnostics of the final model.

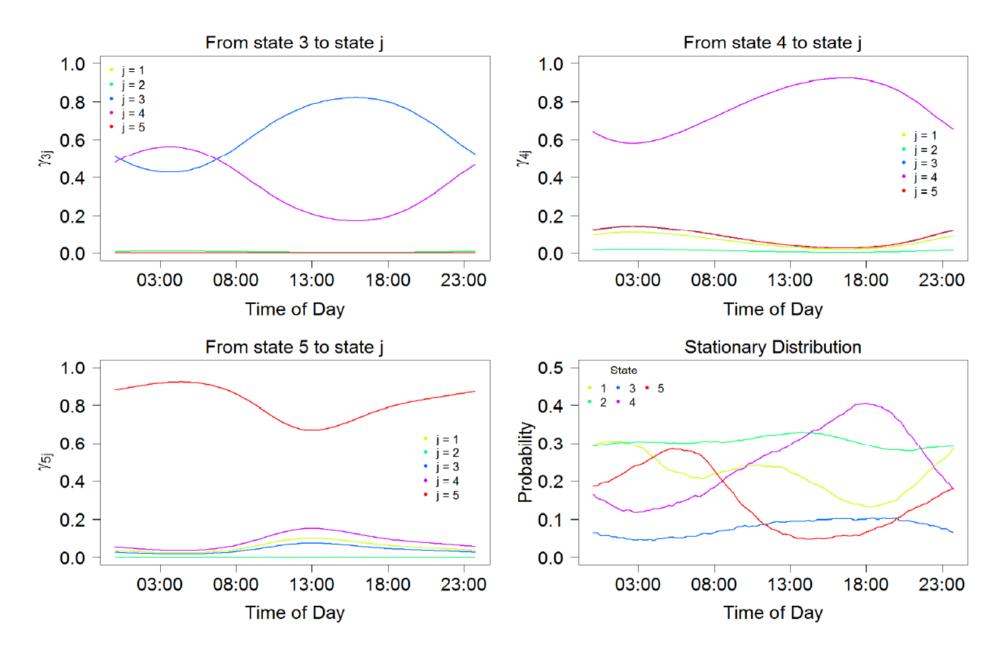


Figure 8.16: Transition probabilities over the day of the final model. The lower right plot is the stationary distribution.

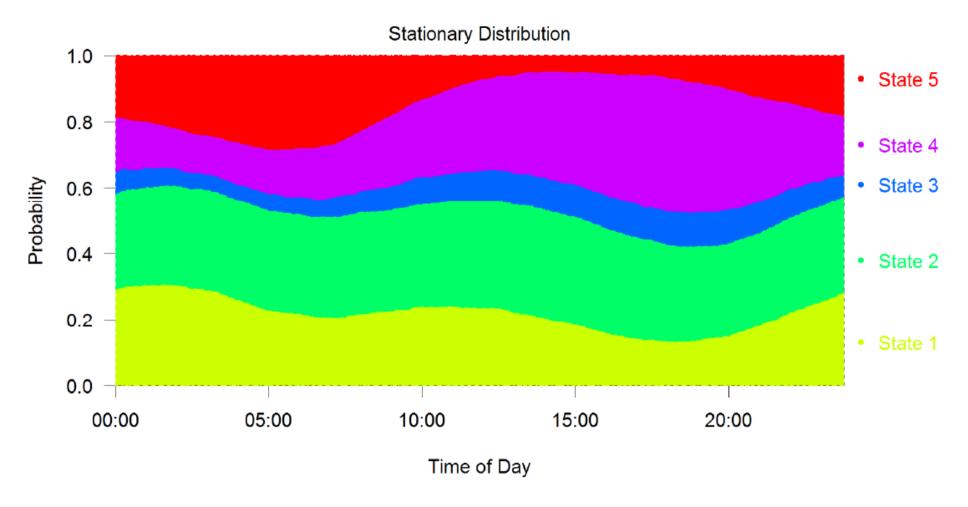


Figure 8.17: Profile of the states over the course of the day. I.e. Stacked stationary probabilities over the course of the day of the final model.

Some conclusions:

That the low activity state 5 is not very likely from 10 am to 11 pm. The highest activity is seen in the late afternoon.

Some references

- Madsen, Henrik; Holst, Jan. Estimation of Continuous-Time Models for the Heat Dynamics of a Building. In: Energy and Buildings, Vol. 22, 1995
- Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik. Modelling the heat dynamics of a building using stochastic differential equations. In: Energy and Buildings, Vol. 31, No. 1, 2000, p. 13-24.
- Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay. Using continuous time stochstic modelling and nonparametric statistics to improve the quality of first principles models. In: Computer Aided Chemical Engineering, Vol. 10, 2002, p. 901-906
- Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay. A unified framefork for systematic model improvement. In: Process Systems Engineering, Vol. 15, 2003, p. 1292-1297.
- Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay. Parameter Estimation in Stochastic Grey-Box Models. In: Automatica, Vol. 40, No. 2, 2004, p. 225-237.
- Nielsen, Henrik Aalborg; Madsen, Henrik. Modelling the Heat Consumption in District Heating Systems using a Grey-box approach. In: Energy and Buildings, Vol. 38, No. 1, 2006, p. 63-71.
- Friling, N.; Jimenez, M.J.; Bloem, H.; Madsen, Henrik. Modelling the heat dynamics of building integrated and ventilated photovoltaic modules. In: Energy and Buildings, Vol. 41, No. 10, 2009, p. 1051-1057.
- Bacher, Peder; Madsen, Henrik. Identifying suitable models for the heat dynamics of buildings. In: Energy and Buildings, Vol. 43, No. 7, 2011, p. 1511-1522.
- Lodi, C.; Bacher, Peder; Cipriano, J.; Madsen, Henrik. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations. In: Energy and Buildings, Vol. 50, 2012, p. 273-281.
- Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources. In: I E E E Transactions on Power Systems, Vol. 27, No. 2, 2012, p. 1060-1069.
- Halvgaard, Rasmus; Bacher, Peder; Perers, Bengt; Andersen, Elsa; Furbo, Simon; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad; Madsen, Henrik. Model predictive control for a smart solar tank based on weather and consumption forecasts. In: Energy Procedia, Vol. 30, 2012, p. 270-278.

DTU-Tsinghua Workshop, Beijing, Junel 2017

Some references (cont.)

- Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources. In: I E E E Transactions on Power Systems, Vol. 27, No. 2, 2012, p. 1060-1069
- Dorini, Gianluca Fabio; Pinson, Pierre; Madsen, Henrik. Chance-constrained optimization of demand response to price signals. In: I E E E Transactions on Smart Grid, Vol. 4, No. 4, 2013, p. 2072-2080.
- Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg; Perers, Bengt. Short-term heat load forecasting for single family houses. In: Energy and Buildings, Vol. 65, 2013, p. 101-112.
- Corradi, Olivier; Ochsenfeld, Henning Peter; Madsen, Henrik; Pinson, Pierre. Controlling Electricity Consumption by Forecasting
 its Response to Varying Prices. In: I E E E Transactions on Power Systems, Vol. 28, No. 1, 2013, p. 421-430.
- Zugno, Marco; Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik. A bilevel model for electricity retailers' participation in a demand response market environment. In: Energy Economics, Vol. 36, 2013, p. 182-197.
- Meibom, Peter; Hilger, Klaus Baggesen; Madsen, Henrik; Vinther, Dorthe. Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System. In: I E E E Power & Energy Magazine, Vol. 11, No. 5, 2013, p. 46-55.
- Andersen, Philip Hvidthøft Delff; Jiménez, María José; Madsen, Henrik; Rode, Carsten. Characterization of heat dynamics of an arctic low-energy house with floor heating. In: Building Simulation, Vol. 7, No. 6, 2014, p. 595-614.
- Andersen, Philip Hvidthøft Delff; Iversen, Anne; Madsen, Henrik; Rode, Carsten. Dynamic modeling of presence of occupants using inhomogeneous Markov chains. In: Energy and Buildings, Vol. 69, 2014, p. 213-223.
- Madsen, H, Parvizi, J, Halvgaard, RF, Sokoler, LE, Jørgensen, JB, Hansen, LH & Hilger, KB 2015, 'Control of Electricity Loads in Future Electric Energy Systems'. in AJ Conejo, E Dahlquist & J Yan (eds), Handbook of Clean Energy Systems: Intelligent Energy Systems. vol. 4, Wiley.
- Halvgaard, RF, Vandenberghe, L, Poulsen, NK, Madsen, H & Jørgensen, JB 2016, Distributed Model Predictive Control for Smart Energy Systems IEEE Transactions on Smart Grid, vol 7, no. 3, pp. 1675-1682.
- Bacher, P, de Saint-Aubain, PA, Christiansen, LE & Madsen, H 2016, Non-parametric method for separating domestic hot water heating spikes and space heating Energy and Buildings, vol 130, pp. 107-112.

Thanks ...

For more information

www.ctsm.info

www.henrikmadsen.org

www.smart-cities-centre.org

- ...or contact
 - Henrik Madsen (DTU Compute)hmad@dtu.dk

Acknowledgement CITIES (DSF 1305-00027B)