Smart-Energy Operating-System;
A Framework for Implementing Flexible Energy Systems

Henrik Madsen, DTU Compute
http://www.henrikmadsen.org
http://www.smart-cities-centre.org
The Danish Wind Power Case

.... balancing of the power system

In 2008 wind power did cover the entire demand of electricity in 200 hours (West DK)

In 2015 more than 42 pct of electricity load was covered by wind power.

For several days the wind power production was more than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power load was covered by wind power
The Center for IT-Intelligent Energy Systems (CITIES) is aiming at establishing methodologies and solutions for design and operation of integrated electrical, thermal, fuel pathways at all scales.
Smart-Energy OS

- **Day Ahead Market**
- **Transmission System Operator (TSO)**
- **Distribution System Operator (DSO)**
- **Balance Responsible Party**
- **Aggregated loads**
- **Intraday market**
- **DIRECT CONTROL (DC)** Individual consumption schedules
- **INDIRECT CONTROL (IC)** Price signals
- **Sub Aggregator A** Forecast services
- **Sub Aggregator B** Forecast services
- **Meteorological forecasts** Local data
- **Advanced controller**
- **Advanced controller**
- **Advanced controller**
- **Actuation state info**
- **Industrial processes**
- **Transport**
- **Water distribution & treatment**
- **Intelligent heating/cooling**
- **Intelligent buildings**
- **Solar thermal**
- **Industrial processes**
- **CHP plant**

Cities
Center for IT Intelligent Energy Systems
Control and Optimization

Day Ahead:
Stoch. Programming based on eg. Scenarios
Cost: Related to the market (one or two levels)

Direct Control:
Actuator: **Power**
Two-way communication
Models for DERs are needed
Constraints for the DERs (calls for state est.)
Contracts are complicated

Indirect Control:
Actuator: **Price**
Cost: E-MPC at low (DER) level, One-way communication
Models for DERs are not needed
Simple 'contracts'

Models for describing flexibility

Data and statistical methods are used to establish cyber-physical models for characterizing the flexibility.
SE-OS Characteristics

- Bidding – clearing – activation at higher levels
- Control principles (direct or indirect) at lower levels
- Cloud based solution for forecasting and control
- Facilitates energy systems integration (power, gas, thermal, ...)
- Allow for specialized aggregators
- Simple setup for the communication
- Simple (or no) contracts
- Rather simple to implement
- Harvest flexibility at all levels
SE-OS
Control loop design – *logical drawing*
Lab testing
SN-10 Controller Prototype
Smart Control of Summerhouses

PilotB SN-10 signal overview
revision 1.0 (CITIES add-on)

CITIES add-on

Sun heating panel

ACT3
ACT4

Heat exchanger

ACT1
ACT2

Pool pump

Smart house controller
SN-10

Temp A1
Temp A2

Temp F1
Temp F2

Temp R1
Temp R2

Pool

RELAY1
RELAY2

S0 1
S0 PWR

S0 2
S0 PWR

+24 VDC
+5 VDC
GND
RELAY1
RELAY2
S0 PWR
S0 1
S0 2
GND
+24 VDC
+5 VDC
GND

FlexGrid
a simple solution to a complex problem
Indirect Control

Control of Heating Systems
Aggregation (over 20 houses)
Flexibility described by Step Response Functions

![Graph showing consumption step response (Olympic Pen.) with a 5-hour duration](image-url)
Control of Power Consumption

- Consumption references
- Model parameters
- Price generator (controller)
- Prices
- Price-responsive consumption
- Aggregated consumption
Control performance

Considerable **reduction in peak consumption**
Direct Control and Bids for Markets

Flexibility Related to Thermal Demand Response
Flexibility Represented by Saturation Curves
(for market integration using block bids)
Characterization of Flexibility

- For indirect (price-based) control:
 - Step Response Functions
 - Flexibility depends on price
 - Area, Slope, Tmax,

- For direct control:
 - Saturation Curves
 - Describes also rebound effect
Case study

Control of Wastewater Treatment Plants
Kolding WWTP

[Diagram of a wastewater treatment plant with labeled areas for NO, NH, 2x O, etc.]

Fleksibel Elforbrug i Virksomheder, Hindsgavl, November 2016
Flexibility in Wastewater Treatment
Sewer System Annual Elspot Savings
Flexible Power Systems
Some Demo Projects in CITIES

- Control of WWTP (ED, Krüger, ..)
- Heat pumps (Grundfos, EconGrid, ENFOR, ..)
- Supermarket cooling (Danfoss, TI, ..)
- Summerhouses (DC, ONE, SE, Energinet.dk, ..)
- Green Houses (NeoGrid, Danfoss, F.Fyn, ..)
- CHP (Dong Energy, F.Fyn, HOFOR, NEAS, ..)
- Industrial production (DI, ..)
- EV (charging) (Eurisco, ENFOR, ..)
-
(Virtual) Storage Solutions

Flexibility (or virtual storage) characteristics:

- Supermarket refrigeration can provide storage 0.5-2 hours ahead
- Buildings thermal capacity can provide storage up to, say, 5-10 hours ahead
- Buildings with local water storage can provide storage up to, say, 2-12 hours ahead
- District heating/cooling systems can provide storage up to 1-3 days ahead
- DH systems with thermal solar collectors can often provide seasonal storage solutions
- Gas systems can provide seasonal/long term storage solutions
Summary

- A Smart-Energy OS for implementing flexible and integrated energy systems has been described
- Built on: Big Data Analytics, Cyber Physical systems, Stochastic opt./control, Forecasting, IoT, IoS, Cloud computing, ...
- **Modelling**: Toolbox – CTSM-R - for combined physical and statistical modelling (grey-box modelling)
- **Control**: Toolbox – MPC-R - for Model Predictive Control
- **Forecasting**: Framework (cloud based) for full probabilistic forecasting
- **Simulation**: Framework for simulating flexible power systems
Discussion

- IT-Intelligent Energy Systems Integration can provide virtual storage solutions (so maybe we should put less focus on electrical storage solutions)
- District heating (or cooling) systems can provide flexibility on the essential time scale (up to a few days)
- Gas systems can provide seasonal virtual storage solutions
- Smart Cities are just smart elements of a Smart Society
- We see a large potential in Demand Response. Automatic solutions, price based control, and end-user focus are important
- We see large problems with the tax and tariff structures in many countries (eg. Denmark).
- Markets and pricing principles need to be reconsidered; we see an advantage of having a physical link to the mechanism (eg. nodal pricing, capacity markets)