CITIES 29.1.2014 Utilities, Data and Intelligent Energy Systems

Klaus Baggesen Hilger Senior Manager, Wind Power klbag@dongenergy.com

The Danish energy sector is on a journey towards a reliable, sustainable energy system rooted in an international market

Paradigm changes in the Danish energy system...

... cause changes in the underlying structure of the energy system

Flexibility services will have an increasing role in responding to the paradigm shift in the energy system

Government objectives put the Danish energy system under pressure for change...

* Note: 11,4% refers to non-adjusted data. If the data is adjusted for the low emissions in 1990 due to large hydro reserve in the Nordics, the reduction is 23,8%. While the Kyoto target refer to non-adjusted data, it remains unclear what the Government target refers to. ** Note: No coal for power production, neither oil burners for heating in 2030

4

The 50% wind integration challenge in 2020 is unprecedented in history!

Note: distribution between onshore and offshore can vary

Key integration questions are...

- How do we store excess amounts of RE power?
- What will be our back-up power production during low or no wind?
- How do we handle the ramping from RE power production and new loads?
- How de we secure strong and reliable power grids?

Source: Energistyrelsen

Example: Who will deliver system services in the hours when wind power push the CHPs out of the market ?

RES are stressing CHP operation and pushing them out of the market

New flexibility providers are needed to handle the 4 main future challenges

NF

energy

-GWh-TWh) rat Capacity

We need to <u>mobilize</u> technologies that accelerate the energy system integration...

Central heat storage, CAES, Biomass, Interconnectors Electric vehicles, Heat pumps, Battery's 2nd life, Smart Grid

Supercaps, Flywheels, Batteries

Securing power quality

Shifting night and day

Storing for the weather

Leveling the seasons

NG

energy

Timescale (hour-day-week-month-year)

... and <u>manage</u> the system intelligently to maximize the value of available energy resources!

Key strands to solve the puzzle...

Several energy infrastructures will be affected by the future RE/DER integration challenge

Energy Infrastructure		1990	2000	2010	2020	2030		
Distributed generation					Firming n PV V	nCHP and /2G		
Controlable flexible loads				De	mand respon	se and VP	Ps (PowerHub)	
Wind expansion		Land wind (Off-shore maturement Participation in balancing				
Decentral generation	D	eCHP expans		Backup function				
"Green gas"	Expa	nsion		Convers technolo	ion ogies	Storage of green-gas		
Distribution	Security of supply				Smart grid capability (congestion and voltage mgt.)			
District heating		Coproduction		Buffer for RE surplus				
Flexibility markets	Long contracts			"sł	nort markets" (5min)	Co opt	mmercial imization	
Central production	Fossil bas co-produc	sed ction	Unit & fleet intelligence	(Convert to balancing plar	Bio r	efineries	
Power transmission	Nationa	al balance	Regional (hy	ydro balar	nce) Inter re	gional (link	with NL, UK, …)	

Thank you for listening

