

Outputs from Copenhagen Workshop

Mark O'Malley, University College Dublin

Multiple Stakeholders

- Identify knowledge generation opportunities
 - "White space"
 - Lessons learnt
 - From the past
 - From one another
- Communication of knowledge generation
 - Academic journals, magazines, reports
 - Thought leadership actions in particular with industry

For Energy Systems Integration

Self Assessment: Desired outcomes

	Regulation	Gas/Electricity	Decentralised	Energy water
Knowledge White Space	 Regulation needs to be in the models Policy models need to have the physics 	 JOINT contingency analysis, planning & flexibility Untapped synergies 	 Enable aggregation Interactions of DR/DER impact grid DATA handling 	 Understand where energy is used in water and water used in energy
Knowledge Lessons Learnt	 Avoid mistakes with systems thinking. LMPS in Europe. 	 Coordination of gas/electricity markets 	 Many positive examples The value proposition 	 Large use of energy Broader aspects, food Localised issue
Communication Academic	 iiESI Website, slides, summary of event Journals, reports, etc. 			
Communication Thought leadership	 Remove uncertainty by objectively identify the "best" options for the energy system Education of society in particular the policy makers 			

For Energy Systems Integration

Addressing Energy Challenges Through Global Collaboration

Our Mission:

To ensure investments in energy systems integration are coordinated and optimized to yield the greatest value possible to the global community.

Our Vision:

Engage people in efforts to enable highly integrated, flexible, clean, and efficient energy systems.

Our Near-Term Objectives:

- Hold 2-3 meetings each year to foster the exchange of ideas, results, lessons learned, and best practices from energy systems integration activities
- Create a framework for knowledge capture, management, and transfer from energy systems experience and experiments conducted to date and in the future
- Coordinate investments in future energy systems integration R&D and education

Contacts and Further Information to be found at:

www.iiesi.org

Slides and summaries will be on website www.iiesi.org

- Next meeting announced soon
 - September at NREL in colloboration with IEA RIAB
 - November in Kyoto, Japan ?
 - Energy Systems Integration 101 July 2014

Energy Systems Integration 101

National Renewable Energy Laboratory Golden Colorado, July 21-25, 2014

Curriculum

- Introduction
- Energy systems domains and interactions
- Methods, tools and applications
- Regulatory, policy and business models
- Project work

Instructors

- Prof. Mark O'Malley, ERC, University College Dublin
- •Dr. Ben Kroposki, Dr. Jaqulein Cochran, Mark Ruth & Patrick Sullivan, NREL
- Prof. Henrik Madsen, CITIES, Danish Technical University
- Prof. Jim McCalley, Iowa State University
- Rob Pratt, PNNL
- •EPRI, TBA

To register please go to <u>https://www.surveymonkey.com/s/BKFZLLC</u> For further information and to reserve your place please contact judy.will@nrel.gov

Gas Electric Integration

Notes

- Questions to Raise
 - Need to look at joint contingency analysis
 - Earth systems coupling not addressed yet
- Key points to reflect in summary
 - Role of storage as degree of freedom for strategic response in the future (William d'H)
 - Interplay of elec flexibility planning w storage and DR needs to be linked to gas storage and perhaps thermal storage
 - Common US-Eur view of using gas to balance growing renewable aspirations
 - Back-up capacity, if decreasing gas network use decays gas supply condition or make it increasingly expensive to maintain. Oil and coal back-up could remain necessary and economically efficient
 - Clear differences between Eur and US in terms of DR forecasting as overall element of forecasting challenges
 - Conflict short-term flexibility and long-term reliability. Real-time diagnosis tools
 - Need to harmonize timing of gas elec market arrangements. Gate closer limitation for gas due to slow dynamics
 - Delayed response of gas network must be reflected in elec inc/dec decisions to avoid gas imbalance risks (need for fast intermediary resources such as storage or DR)
 - Virtual "linepack" vs virtual "inertia" ???
 - Improved coordination between planning/operation for gas and electric sector
 - ENEL focusing on improved CCGT designs and operational optimization to meet renewable system needs (diagnostics, optimized O&M)
 - Regulatory uncertainty large barrier to investment in flexibility resources (ENEL) e.g. thermal power plant requirement differ depending on RE support schemes (e.g. priority grid access)
 - France looking for co-optimization between gas and elect; shift from electricity to gas can deliver long-term DR (10hrs) has stronger impact on electric grid expansion cost
 - See gas quality and use transitioning for gas → renewable gas Trying to frame possibilities and identifify what knowledge remains to be developed.
 - Synergy between biomass digestion (CO2 release, heat release) and 'power2gas' (CO2 capture, heat consumption).

Summary Points Version 1

- US and EU policies consist of multiple schemes
 - Governments mandate renewables
 - Negative pricing results
 - Thermal units retired due to low margin
 - Capacity markets required
 - Coal generation maintained
 - Carbon price increased
 - Grid services markets created, etc...
- Could we have avoided with systems thinking?

- US and EU taking quite different approaches
 - Federal/State relationships (EU strong Fed, US strong State)
 - zonal pricing in EU vs. nodal LMPs in US
 - competitive markets (PJM, EU) vs. hybrid regulation (cost of service in Wisconsin + MISO) vs. full regulation (other US)
- Difficult to compare US and EU systems
 - Size, diversity of power pools is comparable
 - Different political targets and objectives
 - Many lessons to be learned and shared
 - Single optimal framework may not be possible or desirable

• Comments of Note

- Prof. Perez-Arriaga: Why is it not thinkable to have nodal pricing in Europe? Would it be worth the effort?
- Andy Ott: In the EU, the market design has been done backwards; first design of forward market, but ignoring the physical flows
- Anne Hoskins: Active markets for demand response in PJM area show remarkable success in reducing peak. Markets do work.
- Eric Callisto: Electricity rates in regulated markets tend to be lower than in competitive markets
- William D'haeseleer: Regulators apply the rules set by policy makers! So often policy makers are to be blamed for bad market function

• Closing Thoughts

- It is essential to think about the time frame of the energy supply: from long term (investment) and security of supply up to real time operations, balancing actions.
- They each focus on separate issues, but they are linked and influenced by policy.
- It was clear that all systems aspects need to be taken into account when designing regulation, and
- to take regulation into account when modeling system aspects...

Decentralised DSM

"Decentralisation & DSM" Identified Needs

- enabling aggregation of loads
 - regulatory freedom to operate (current rules usually made for incumbent generators and large interruptible loads)
 - compatible (and inexpensive) IT for large-scale roll-out
- value proposition
 - make understandable to customer that provides load (e.g. \$50 Walmart card in PJM)
 - markets for different services open to aggregators
- better understand and control localised grid interactions (+/-) upon activation of DER and DR
- challenge of handling large quantities of data
- learn from many successful examples in different countries