

Joint Optimization under Uncertainty for Heat & Power Systems (WP7)

Marco Zugno (<u>mazu@dtu.dk</u>)

Juan Miguel Morales Henrik Madsen Anna Hellmers Maria Nielsen

DTU, 22nd October 2014

DTU Compute

 $f(x+\Delta x) = \sum_{i=1}^{\infty} \frac{1}{i}$ 182818284 Department of Applied Mathematics and Computer Science

Me, me, me!

- Italian, in Denmark since 2006
- Background: Electrical/Automation Engineer
- PhD awarded in 2013 at DTU Compute
 - Managing renewables in power systems
 - Optimization/modeling uncertainty
- Recently PostDoc within CITIES
- Research focus:
 - Stochastic programming
 - Robust optimization
 - Decision rules
 - Hierarchical optimization
 - ...
 - Applications in energy markets/systems

Why Considering Heat & Power Systems Jointly?

Motivation:

- Integration of renewables in Denmark will involve both sectors (wind, biofuels, etc.)
- Heat and power systems are interdependent
- Heat system can provide flexibility to integrate renewables

Challenges:

- Need for joint decision-making tools to exploit these synergies
- Optimization models ought to account for uncertainty (demand, prices, etc.)
- System dynamics (multistage)

Optimization under Uncertainty Framework

FIRST STAGE		SECOND STAGE
Day-ahead decisions x	Uncertainty δ realizes	Real-time decisions y(δ)
•Unit on/off status (binary)	•Heat demand	 Actual production
Production plan	•Power price	Second-stage decisions are functions of uncertainty
•Market trade	 Wind power production 	realization

Day-ahead cost Projection of real-time cost (profit changed in sign) (profit changed in sign) Minimize $c_x^T x + Exp_{\delta} \{ c_y^T y(\delta) \}$ $x, y(\cdot) \quad A_x x + A_y y(\delta) \ge b(\delta), \quad \forall \delta$

> The planning must guarantee feasible realtime operation under a number of plausible realizations of the uncertain parameters

Stochastic Programming vs Robust Optimization

Robust Management of Heat & Power Systems

- Optimize management of heat and power systems:
 - planning
 - trading
 - operation
- Want to account for **uncertainty**:
 - heat demand
 - power prices
- We aim at a conservative solution: heat supply guaranteed for the most extreme realization of heat demand

Peculiarities of the model

- We cast the problem as a **robust optimization** model
- Piecewise-linear **decision rules** approximate optimal recourse: recourse is affine function of the uncertainty
- We model trading in multiple commodity markets
- Uncertainty enters optimization model via **simple** descriptions (support set, mean, correlation, etc.)

Optimal Trading for Wind Farms and CHP Plants (Anna Hellmers' M.Sc. project)

- Analysis of joint trading strategies for wind/CHP plants in the balancing market
- Assessment of how the heat system can help **balance** the deviations of wind power
- Real-world data from existing plants
- State-of-the-art forecasting models for uncertainty (heat demand, power prices, wind)

Probabilistic Forecasting and Optimization for CHP Systems (Maria Nielsen's M.Sc. Project)

- Assessment of societal value of electrical boilers and heat pumps
- Real-world data from the Greater Copenhagen area including taxes and subsidies
- Model based on **stochastic programming** to account for uncertain heat demand

Ongoing and Future Work

- Production of three peer-reviewed articles (ongoing)
 - Commitment and Dispatch of Heat and Power Units via Affinely Adjustable Robust Optimization (Zugno, Morales, Madsen)
 - Assessing the Role of Heat Pumps and Electrical Boilers in the Danish Heat and Power Systems (Nielsen, Zugno, Morales, Madsen)
 - Portfolio Operation Strategies for Wind Farms and CHP Plants in a Dual-Price Balancing Market (Hellmers, Zugno, Morales, Skajaa)
- Realistic case-study assessing the potential of RO vs current management strategies for heat and power systems (ongoing)
- Refinement of RO model
 - More realistic modeling of the trading process
 - More sophisticated modeling of the uncertainty