Joint Optimization under Uncertainty for Heat & Power Systems (WP7)

Marco Zugno (mazu@dtu.dk)
Juan Miguel Morales
Henrik Madsen
Anna Hellmers
Maria Nielsen

DTU, 22nd October 2014
Me, me, me!

- Italian, in Denmark since 2006
- Background: Electrical/Automation Engineer
- PhD awarded in 2013 at DTU Compute
 - Managing renewables in power systems
 - Optimization/modeling uncertainty
- Recently PostDoc within CITIES
- Research focus:
 - Stochastic programming
 - Robust optimization
 - Decision rules
 - Hierarchical optimization
 - ...
 - Applications in energy markets/systems
Why Considering Heat & Power Systems Jointly?

Motivation:

• Integration of **renewables** in Denmark will involve both sectors (wind, biofuels, etc.)

• Heat and power systems are **interdependent**

• Heat system can provide **flexibility** to integrate renewables

Challenges:

• Need for joint decision-making tools to exploit these synergies

• Optimization models ought to account for **uncertainty** (demand, prices, etc.)

• System **dynamics** (multistage)
Optimization under Uncertainty Framework

FIRST STAGE
Day-ahead decisions x
- Unit on/off status (binary)
- Production plan
- Market trade

SECOND STAGE
Real-time decisions $y(\delta)$
- Actual production
Second-stage decisions are functions of uncertainty realization

Uncertainty δ realizes
- Heat demand
- Power price
- Wind power production

Day-ahead cost
(profit changed in sign)

Projection of real-time cost
(profit changed in sign)

Minimize:

$$
\begin{align*}
& c_x^T x + \text{Exp}_\delta \{ c_y^T y(\delta) \} \\
\text{subject to:} & \\
& A_x x + A_y y(\delta) \geq b(\delta), \quad \forall \delta
\end{align*}
$$

The planning must guarantee feasible real-time operation under a number of plausible realizations of the uncertain parameters.
Stochastic Programming vs Robust Optimization

Stochastic Programming
- scenario-based
- day-ahead, real-time

Robust Optimization
- uncertainty set
- δ_1, δ_2

Recourse approximation
- discretization
- $y \rightarrow \delta$

- piecewise-linear
- $y \rightarrow \delta$
Robust Management of Heat & Power Systems

- Optimize management of heat and power systems:
 - planning
 - trading
 - operation
- Want to account for uncertainty:
 - heat demand
 - power prices
- We aim at a conservative solution: heat supply guaranteed for the most extreme realization of heat demand
Peculiarities of the model

- We cast the problem as a robust optimization model
- Piecewise-linear decision rules approximate optimal recourse: recourse is affine function of the uncertainty
- We model trading in multiple commodity markets
- Uncertainty enters optimization model via simple descriptions (support set, mean, correlation, etc.)
Optimal Trading for Wind Farms and CHP Plants
(Anna Hellmers’ M.Sc. project)

- Analysis of joint trading strategies for wind/CHP plants in the balancing market
- Assessment of how the heat system can help balance the deviations of wind power
- Real-world data from existing plants
- State-of-the-art forecasting models for uncertainty (heat demand, power prices, wind)
Probabilistic Forecasting and Optimization for CHP Systems
(Maria Nielsen’s M.Sc. Project)

- Assessment of societal value of electrical boilers and heat pumps
- Real-world data from the Greater Copenhagen area including taxes and subsidies
- Model based on stochastic programming to account for uncertain heat demand
Ongoing and Future Work

- Production of three peer-reviewed articles (ongoing)
 - *Commitment and Dispatch of Heat and Power Units via Affinely Adjustable Robust Optimization* (Zugno, Morales, Madsen)
 - *Assessing the Role of Heat Pumps and Electrical Boilers in the Danish Heat and Power Systems* (Nielsen, Zugno, Morales, Madsen)
 - *Portfolio Operation Strategies for Wind Farms and CHP Plants in a Dual-Price Balancing Market* (Hellmers, Zugno, Morales, Skajaa)

- Realistic case-study assessing the potential of RO vs current management strategies for heat and power systems (ongoing)

- Refinement of RO model
 - More realistic modeling of the trading process
 - More sophisticated modeling of the uncertainty