Forecasting, Control and Optimisation
for Future Electric Energy Systems
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Potentials and Challenges -

for renewable energy

@ Scenario: We want to
cover the worlds entire
need for power using wind
power.

» How large an area should
be covered by wind
turbines?
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Potentials and Challenges -
for renewable energy *
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@ Conclusion: Use
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The Danish Wind Power Case
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. balancing of the power system

25 % wind energy (West Denmark January 2008){
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In 2008 wind power did cover the entire
demand of electicity in 200 hours
(West DK)
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In December 2013 and January 2014 more than
55 pct of electricity load was covered by
wind power. And for several days the wind
power production was more than 120 pct of

the power load
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. Jutland - Sweden Power right now
.1._ Exports: 728 MW Measured in MW:
.'I-_ " o Central power stations 1.575
Y e Local CHP plants 401
’ » ' wind turbines 4.088

Solar cells 113

Bl Fla vl Net exchange eksport 1.845

Exports: 953 MW

Electricity consumption 4.33

CO2 emissions 179 g/kwh

LEGEND v

Zealand - Sweden
Exports: 1.048 MW

Bornholm - Sweden
Exports: 2 MW

The Great Belt
---= 590 MW

Zealand - Germany

Imports: 601 MW

Jutland - Germany

Imports: 284 MW

-
s

Last updated 15. Februar 2014 12:41

© Power right now @ natural gas right now @ Locations



Example: Storage by
Energy Systems Integration
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@ Denmark (2014) : 46 pct of power load by renewables

@ (Virtual) storage principles:
_ Buildings can provide storage up to, say, 5-12 hours ahead
_ District heating/cooling systems can provide storage up to 1-3 days ahead
— Gas systems can provide seasonal storage
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Optim. and Control Challenges ==

Day Ahead
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Day Ahead:

_ Stoch. Programming based on eg. Scenarios
_ Cost: Related to the market (one or two levels)
_ Operational optimization - also for the grid

Direct Control:

_ Actuator: Power

_ Cost: eg. MV, LQG, EMPC, ...
_ Two-way communication

_ Models for DERs are needed
_ Constraints for the DERs (calls for state est.)
_ Contracts are complicated

Indirect Control:

_ Actuator: Price

_ Cost: GPC, LQG at high level, VaR-alike
_ Cost: E-MPC at low (DER) level, ..

_ One-way communication

_ Models for DERs are not needed

_ Simple 'contracts'

(a single large problem)
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Direct vs Indirect Control &=

Level

Direct Control (DC)

[ndirect Control (IC)
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Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct

control the optimization 1s globally solved at level I1I. Consequently the optimal control signals

u; are sent to all the ] DER units at level IV. (IC) In indirect control the optimization at level

[11 computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs

optimize their own energy consumption taking into account p as the actual price of energy.
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Forecast requirements

- Day Ahead:

= — Forecasts of loads
— Forecast of Grid Capacity
(using eg. DLR)

— Forecasts of production (eg.
Wind and Solar)

— « Direct Control: .

Direct Control 3 Agaregator

£ y -

(a)
Sub Aggregator

Indirect Control
(Ic)

aggee gated loads

(B

MET Forecasts Sub ﬁggregamr
Local Data - Fol btidl Biied

— Forecasts of states of DERs
— Forecasts of load

D, ahd eotiel saiens

"
°
Tl o
.‘T
— = JAdvanced i
Cortraller

E-—-E I::I — Forecasts of prices

— Forecasts of load

e Indirect Control:

Advanced
Controller
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Forecasting .... ==

Forecasting is very important ¢ -

Type of forecasts: : .

@ Point forecasts * o

@ Conditional mean and ) .
covariances

@ Conditional quantiles

@ Conditional scenarios > -]

@ Conditional densities g7

@Stochastic differential  §
equations :

DTU Compute
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Challenges with integrating
RE in the distribution system

B
S
P
4 Adaptive and probabilistic forecasts become essential

4 Methods for using prob. forecasts in decision making

@ Correlation of forecast errors must be described

@ Cross-correlation between eg wind and solar forecasting
must be described

@ Stochastic / operational models are needed (eg. for state
estimation)

4 Modeling of flexibility (direct control)
4 Modeling of price-response (indirect control)
4 Methods for stochastic optimization and control

Some examples are provided in case studies later on
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Solar Power Forecasting
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DTU
Solar Power Forecasting &£

. Shading must be taking into
account -> dedicated
functions

. Dusts, etc -> need for
adaptive models

2000
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20000

day 300
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Prob. Wind Power Forecasting
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Storage sizing

Correct Naive
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Tools are developed for:

» Wind Power Forecasting

» Solar Power Forecasting

» Heat/Cooling load forecasting
» Gas load forecasting

* Price forecasting

» Forecasts for state control

Our methods are eg embedded in Australian Wind Energy
Forecasting Systems (AWEFS) and Australian Solar Energy
Forecasting Systems (ASEFS) - see eg P. Coppin, CSIRO, ASI
Energy Forecasting, Final Report, March 2012.
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Case study

Control of Power
Consumption (DSM)

1t
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DTU
Data from BPA =

Olympic Pensinsula
project

.

27 houses during one year

@ Flexible appliances: HVAC,
cloth dryers and water boilers

@ 5-min prices, 15-min
consumption

@ QObjective: limit max
consumption
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Aggregation (over 20 houses) ==
il
Al
3 —
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Non-parametric Response on DT
Price Step Change =

>

Model inputs: pice, minute of day, outside
temperature/dewpoint, sun irrandianc

Olympic Peninsula

E‘ 0.2 . .

e Consumption step response (Olympic Pen.)

é 5 hours
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= 0 >
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_0.2 1 1 1 1 1
-10 -5 0 5 10 15 20
Hours
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Consumption
references

L .
-

Control of Energy

Consumption

Model parameters

DTU Compute

Frice generator
(controller)

Frices

Price-response
estimator

5

FPrice-responsive
consumption

DTU

i

Aggregated
consumption
L.
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Control performance =

DTU

>
>

 Considerable reduction in peak consumption

* Mean daily consumption shift

14

12r

Consumption [kW]
o0

Responsive
Unresponsive

2 1 1

0 5 10 15 20
o 150f e N
2 Generated
o .

100F ™ 7 e Desired level
0 5 10 15 20
Hour of day
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I DTU Compute

Case study

Super Market Cooling
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Simulations — DER Controllers

* Direct Control
— Temperature Reference Tracking
N

2
min Z (T = T7")" + 11 APy,

n=1
s.t:
— System Temperature/Power Dynamics from ARMAX model

Tmaxi Tminf Pmax

— Power Reference Tracking
N

minZ(Pn — Py’

n=1
* Indirect Control
— Economic MPC

min A By + VT + T

n=1

* Noteall controller formulations are “MPC” — i.e. forecasts of price/references only
available up to a fixed horizon — control consists of a sequence of receding horizon

oitimisations



Simulations — Temperature Tracking

* Asymmetry

Power Consumption Power Consumption
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Simulations — Power Tracking

e Saturation Time

Power Consumption
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Simulations - Power Tracking

00 -
q‘ =& — =30 mins
q —& — =120 mins
so0 b \%},\
Y
E 400 | "2\
= &)
)
= B/ N
£ Z00f N
3 N
) l\\
= . N\
T s Y
= "
~$o
= ""'-...__.
- e
100 F TeeERsEg
- :8
D I I . ! 1 1 1 1 1 ]
2 3 4 5 B 7 B s oeone

Curtailed Fower [kWW]
e Starting from maximum steady-state power consumption (to maintain
minimum allowable temperature)

« Saturation defined as time until an increase in power consumption from the
curtailed level (e.g. approximately time to reach maximum allowed
temperature)

« Forecast of 30 minutes; initial work shows a longer forecasts decreases the
time to saturation
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Case study

Control of Heat Pumps
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Grundfos Case Study

Schematic of the heating sv
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Modeling Heat Pump and Solar Collector

Cpr T

, .
;:.

¢ i<

Ewapiratal Water Tank

Heat Pump
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Modeling Heat Pump and Solar Collector

CeTz =0 = (UA) ol To— Toy) = (M) T = T.) (2a)

Cow Tw =W, 4+ (UA) s (Ts — Ty) — (UA)We(Tw — T¢)  (2b)

CeTr = (UA)Wi(Tw — Tr) — (UA)s( T — T¢) + po. (2¢)

CTr = (UA)#(Tr — T) — (UA)W(T, — Ta) + (1 — p)ds (2d)
D1
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Avanced Controller

Formulation

The Economic MPC problem, with the constraints and the model,
can be summarized into the following formal formulation:

N-1
- /

{uw;&@ kZ:ﬂc U (4a)
Subject to  xx11 = Axx + Buy + Edyk=0,1,...,N—1 (4b)
Yo = €3y, o— 12 00N (4c)

U 2 e iy k=0,1,....,N—1 (4d)
Bllnin € Ay < Dligisy k=0.1,...;,N—1 (4e)

Ymin < Yk < Ymax k=0,1,...,N (4f)
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EMPC for heat pump with
solar collector -

I DTU Compute ) ClT'ES
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Conclusions

# A hierarchi of optimization/control problems with integrated
forecasting for both direct and indirect control have been
described. This structure facilitates energy systems
integration.

# Examples of relevance for DSO's are outlined:
Control of heat accumulated in the thermal mass

Control of supermarket cooling (both direct and indirect
control)

Control of heat pump and thermal solar collector system
for a family house

# All examples have illustrated the used of forecasts
# For the moment direct control is mostly used for DSO DSM
# However, indirect control is now used more and more.
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