DTU Forecasting, Control and Optimisation for Future Electric Energy Systems

Henrik Madsen (www.henrikmadsen.org) Durham Workshop: Risk and Reliability Modelling of Energy Systems

DTU Compute Department of Applied Mathematics and Computer Science

Potentials and Challenges for renewable energy

- Scenario: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turbines?

Potentials and Challenges for renewable energy

- Scenario: We want to cover the worlds entire need for power using wind power
- How large an area should be covered by wind turbines?
- Conclusion: Use intelligence
- Calls for Smart Energy
 Solutions and Energy
 Systems Integration

.... balancing of the power system

The Danish Wind Power Case

■ Wind power □ Demand

In 2008 wind power did cover the entire demand of electicity in 200 hours (West DK)

DTU Compute Department of Applied Mathematics and Computer Science

■ Wind power □ Demand

In December 2013 and January 2014 more than 55 pct of electricity load was covered by wind power. And for several days the wind power production was more than 120 pct of the power load

Example: Storage by Energy Systems Integration

Denmark (2014) : 46 pct of power load by renewables

(Virtual) storage principles:

- Buildings can provide storage up to, say, 5-12 hours ahead
- District heating/cooling systems can provide storage up to 1-3 days ahead
- Gas systems can provide seasonal storage

DTU Compute Department of Applied Mathematics and Computer Science

Optim. and Control Challenges

Day Ahead:

- _ Stoch. Programming based on eg. Scenarios
- _ Cost: Related to the market (one or two levels)
- _ Operational optimization also for the grid

Direct Control:

- _ Actuator: Power
- _ Cost: eg. MV, LQG, EMPC, ... (a single large problem)
- _ Two-way communication
- _ Models for DERs are needed
- _ Constraints for the DERs (calls for state est.)
- Contracts are complicated

Indirect Control:

- _ Actuator: Price
- _ Cost: GPC, LQG at high level, VaR-alike
- _ Cost: E-MPC at low (DER) level, ..
- One-way communication
- _ Models for DERs are not needed
- _ Simple 'contracts'

Direct vs Indirect Control

Level	Direct Control (DC)	Indirect Control (IC)
Ш	$\min_{x,u} \sum_{k=0}^{N} \sum_{j=1}^{J} \phi_j(x_{j,k}, u_{j,k})$	$ \min_{\hat{z}, p} \sum_{k=0}^{N} \phi(\hat{z}_k, p_k) $ s.t. $\hat{z}_{k+1} = f(p_k) $
IV	$\downarrow_{u_1} \dots \downarrow_{u_J} \uparrow_{x_1} \dots \uparrow_{x_J}$ s.t. $x_{j,k+1} = f_j(x_{j,k}, u_{j,k}) \forall j \in J$	$\min_{u} \sum_{k=0}^{N} \phi_j(p_k, u_k) \forall j \in J$ s.t. $x_{k+1} = f_j(x_k, u_k)$

Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct control the optimization is globally solved at level III. Consequently the optimal control signals u_j are sent to all the J DER units at level IV. (IC) In indirect control the optimization at level III computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs optimize their own energy consumption taking into account p as the actual price of energy.

Forecast requirements

Day Ahead:

- Forecasts of loads
- Forecast of Grid Capacity (using eg. DLR)
- Forecasts of production (eg. Wind and Solar)

Direct Control: .

- Forecasts of states of DERs
- Forecasts of load

Indirect Control:

- Forecasts of prices
- Forecasts of load

Forecasting

Forecasting is very important

Type of forecasts:

- Point forecasts
- Conditional mean and covariances
- Conditional quantiles
- Conditional scenarios
- Conditional densities
- Stochastic differential equations

Challenges with integrating RE in the distribution system

- Adaptive and probabilistic forecasts become essential
- Methods for using prob. forecasts in decision making
- Correlation of forecast errors must be described
- Cross-correlation between eg wind and solar forecasting must be described
- Stochastic / operational models are needed (eg. for state estimation)
- Modeling of flexibility (direct control)
- Modeling of price-response (indirect control)
- Methods for stochastic optimization and control

Some examples are provided in case studies later on

Solar Power Forecasting

Solar Power Forecasting

- Shading must be taking into account -> dedicated functions
- Dusts, etc -> need for adaptive models

Storage sizing

Tools are developed for: 🛱

- Wind Power Forecasting
- Solar Power Forecasting
- Heat/Cooling load forecasting
- Gas load forecasting
- Price forecasting
- Forecasts for state control

Our methods are eg embedded in Australian Wind Energy Forecasting Systems (AWEFS) and Australian Solar Energy Forecasting Systems (ASEFS) – see eg P. Coppin, CSIRO, ASI Energy Forecasting, Final Report, March 2012.

Case study

Control of Power Consumption (DSM)

DTU Compute Department of Applied Mathematics and Computer Science

Data from BPA

Olympic Pensinsula project

- 27 houses during one year
- Flexible appliances: HVAC, cloth dryers and water boilers
- 5-min prices, 15-min consumption
- Objective: limit max consumption

Aggregation (over 20 houses)

Non-parametric Response on DTU Price Step Change

Model inputs: pice, minute of day, outside temperature/dewpoint, sun irrandianc

Olympic Peninsula

Control of Energy Consumption

 Ξ

Control performance

DTU

- Considerable reduction in peak consumption
- Mean daily consumption shift

Case study

Super Market Cooling

DTU Compute Department of Applied Mathematics and Computer Science

Simulations – DER Controllers

- Direct Control
 - Temperature Reference Tracking

$$\min \sum_{n=1}^{N} \left(T_n - T_n^{ref} \right)^2 + \gamma_1 \Delta P_{1,t-1}$$

s.t:

- System Temperature/Power Dynamics from ARMAX model
- $T_{max}, T_{min}, P_{max}$
- Power Reference Tracking

$$\min\sum_{n=1}^{N} \left(P_n - P_n^{ref} \right)^2$$

- Indirect Control
 - Economic MPC

$$\min \sum_{n=1}^{N} \lambda_n P_n + \gamma_1 T_N^{MT} + \gamma_2 T_N^{LT}$$

 Note all controller formulations are "MPC" – i.e. forecasts of price/references only available up to a fixed horizon – control consists of a sequence of receding horizon optimisations

Simulations – Temperature Tracking

Asymmetry

Simulations – Power Tracking

Saturation Time

Pcurt: 5kW

Simulations - Power Tracking

- Starting from maximum steady-state power consumption (to maintain minimum allowable temperature)
- Saturation defined as time until an increase in power consumption from the curtailed level (e.g. approximately time to reach **maximum** allowed temperature)
- Forecast of 30 minutes; initial work shows a longer forecasts decreases the time to saturation

Case study

Control of Heat Pumps

DTU Compute Department of Applied Mathematics and Computer Science

Grundfos Case Study

Schematic of the heating system

DT

Modeling Heat Pump and Solar Collector

Simplified System

Modeling Heat Pump and Solar Collector System Equations - Differential Equations

Equations

$$C_{s} \dot{T}_{s} = \eta \Phi_{s} - (UA)_{sw} (T_{s} - T_{w}) - (UA)_{sa} (T_{s} - T_{a})$$
(2a)

$$C_{w} \dot{T}_{w} = \eta W_{c} + (UA)_{sw} (T_{s} - T_{w}) - (UA)_{wf} (T_{w} - T_{f})$$
(2b)

$$C_{f} \dot{T}_{f} = (UA)_{wf} (T_{w} - T_{f}) - (UA)_{fr} (T_{w} - T_{f}) + p \Phi_{s}$$
(2c)

$$C_{r} \dot{T}_{r} = (UA)_{fr} (T_{f} - T_{r}) - (UA)_{ra} (T_{r} - T_{a}) + (1 - p) \Phi_{s}$$
(2d)

Avanced Controller

Economic Model Predictive Control

Formulation

The Economic MPC problem, with the constraints and the model, can be summarized into the following formal formulation:

$$\min_{\{u_k\}_{k=0}^{N-1}} \phi = \sum_{k=0}^{N-1} c' u_k$$
Subject to
$$x_{k+1} = A x_k + B u_k + E d_k k = 0, 1, \dots, N-1 \quad (4b)$$

$$y_k = C x_k \qquad k = 1, 2, \dots, N \quad (4c)$$

$$u_{min} \le u_k \le u_{max} \qquad k = 0, 1, \dots, N-1 \quad (4d)$$

$$\Delta u_{min} \le \Delta u_k \le \Delta u_{max} \qquad k = 0, 1, \dots, N-1 \quad (4e)$$

$$y_{min} \le y_k \le y_{max} \qquad k = 0, 1, \dots, N \quad (4f)$$

EMPC for heat pump with solar collector

Conclusions

- A hierarchi of optimization/control problems with integrated forecasting for both direct and indirect control have been described. This structure facilitates energy systems integration.
- Examples of relevance for DSO's are outlined:

Control of heat accumulated in the thermal mass Control of supermarket cooling (both direct and indirect control)

Control of heat pump and thermal solar collector system for a family house

- All examples have illustrated the used of forecasts
- For the moment direct control is mostly used for DSO DSM
- However, indirect control is now used more and more.

DTU Compute Department of Applied Mathematics and Computer Science

Thanks to

Niamh O'Connell, Jacopo Parvizi, Klaus Baggesen Hilger, Sven Creutz Thomsen,

