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Wind integration in Denmark
* Notice - wind only:

Key figures for wind power*

Wind power generation 11.1 hillion K'Wh 10 .3 hillion K'Wh
Electricity consumption (including loss in = e
Ty : 33.5 hillion K'Wh 34.1 hillion kK'Wh
the electricity grid)
Wind power share of electricity
; _ 33.2% 30.1%
consumption the entire year
Wind power share of electricity
- 54.8% 335%
consumption in December
Wind power capacity at the end of the
4,792 MW 4,166 MW
Year
: Approx. 93% of a Approx. 102% of a
Energy content of the wind
standard year standard year
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. Jutland - Sweden Power right now
.1._ Exports: 728 MW Measured in MW:
.'I-_ " o Central power stations 1.575
Y e Local CHP plants 401
’ » ' wind turbines 4.088

Solar cells 113

Bl Fla vl Net exchange eksport 1.845

Exports: 953 MW

Electricity consumption 4.33

CO2 emissions 179 g/kwh

LEGEND v

Zealand - Sweden
Exports: 1.048 MW

Bornholm - Sweden
Exports: 2 MW

The Great Belt
---= 590 MW

Zealand - Germany

Imports: 601 MW

Jutland - Germany

Imports: 284 MW

-
s
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Latest production data for Tyra: 6.061.111 kWh
Applicable for 15. februar 2014 11:00-12:00

e

Lille Torup gas storage facility Entry: 824.732 kWh/h
12,150 kKWh/m3

Calorific value:

1L

«

Nybro Entry: 5.882.672 kWh/h
12,197 kWh/m3

d

Calorific value:

1]
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Natural gas right now
Gas flow — kWh/h:

Nybro entry

5.882.672
1.002.678
1.405.760
824.732

0]
4.776.523

Ellund exit

Draggr exit

Energinet.dk Gas Storags
DONG Storage

Exit Zone

CO2 emission factor 56,76 kg/GJ

LEGEND v

Drag@r Exit: 1.405.760 kWh/h

Calorific value: 12,234 kWh/m3

-

Egtved Calorific value: 12,213 kWh/m3

56,76 kg/GJ

CO2 emissionsfaktor:

Calorific value:

Stenlille gas storage facility 0 kWh/h
12,022 kWh/m?3

</

1.002.678 kWh/h
12,228 kWh/m3

o

Ellund Exit:

Calorific value:

@ Power right now

© wnatural gas right now @ Locations
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Solar district heating in Denmark

Feldborg 7500 .
4000 Planned
Dronninglund
@rnhej-Grenbj. 15000 -
5000 Planned in 2014
5;"5‘:;' 197.855 M2
Tim Total collector area:

4200 574023 m?
35;5 le-Viskinge
702442000 ‘
Sandved-Tormemark
. 3893
10073431000
DTI Legumkioster Marstal
Toftlund 18365415000 i
Der 17000445000 o i:;n m PlanEnergi)
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Concepts in CITIES

Integration based on IT solutions and forecasting leading
to methods for operation and planning for future energy
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[l Example: Storage by
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@ Operational (simplified) models for integration, optimization and control
@ (Virtual) storage principles:
— Buildings provide storage up to, say, 5-10 hours ahead
— District heating systems can provide storage up to 1-2 days ahead
— Gas systems can provide seasonal storage



CITIES Scientific Objectives

To establish forecasts and ITC solutions for design
and operation of integrated electrical, thermal, fuel
pathways at all scales (budget 10 mill. Euros)
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Control/Forecasting Principles

Indirect Control
(IC)

aggmegated oads

Direct Control _
(DC)
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Control/Opt. Principles

Direct Control
(DC)
'F-M.

Balancing
Market

Agagregator

Indirect Control
(ic)

aggegated loads

(a)
Sub Aggregator

~ Feantas | Butvien
-t aind geniiel s ardes

MET Forecasts
Local Data

- Fetweasi Banien
-Dipd. and onii sl setuites

Actuation
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Controller Controller

Advanced
Cortroller
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« Day Ahead:

Stoch. Programming based on eg. Scenarios
Cost: Related to the market (one or two levels)
Operational optimization - also for the grid

e Direct Control:

Actuator: Power

Cost: eg. MV, LQG, EMPC, ... (a single large problem)
Two-way communication

Models for DERs are needed

Constraints for the DERs (calls for state est.)
Contracts are complicated

* Indirect Control:

Actuator: Price

Cost: GPC, LQG at high level, VaR-alike
Cost: E-MPC at low (DER) level, ..
One-way communication

Models for DERs are not needed

Simple 'contracts’

yb CITIES

Centre for IT Intelligent Energy Systems



Direct vs Indirect Control

Level Direct Control (DC) Indirect Control (IC)
[11 min, Z;:D Z‘.’;l G (L k, Ujk) min; , Z;::n O(Zk, Pr)
, . ‘ ; ~ :
st Zrp1 = f(pr)
T/ TR R _
Y min,, Z;”:D Oi(pr,ux) Vi€ J
st = hilEaang) Yield St Teyi = Fi(ze )

Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct
control the optimization 1s globally solved at level I1I. Consequently the optimal control signals
u; are sent to all the ] DER units at level IV. (IC) In indirect control the optimization at level
[I1 computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs

optimize their own energy consumption taking into account p as the actual price of energy.

DTU Compute | | | / CITIES
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Forecast requirements

« Day Ahead:

— Forecasts of loads
Market Market

i . .
— — Forecast of Grid Capacity
e | (using eg. DLR)
: g — Forecasts of production (eg.
Direct Control ; Aggregator Indirect Control 1: Wind and Solar)
(bc) y\__ ic) gl
— « Direct Control: .
i (- VET s S Aggrgat | — Forecasts of states of DERs
& 5 | — Forecasts of load
|- - (i -+« Indirect Control:
e \ ; — Forecasts of prices
o =] Hﬂ — Forecasts of load
DTU Compute ‘.' ! CITI ES

Department of Applied Mathematics and Computer Science —~  Centre for IT Intelligent Energy Systems



Which type of forecast to use?

@ Point forecasts 2 g

s Conditional mean and ¢ s
covariances g

» Conditional quantiles 3 .

s Conditional scenarios 3

@ Conditional densities

@ Stochastic differential
equations , ¢

0 24 120 144  hours
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Ongoing CITIES projects using
MET forecasts

# Temperature control in houses (Grundfos, ENFOR)

«# HVAC systems (Grundfos)

# Supermarket cooling (Danfoss, UCD)

# Consumption in family houses (Tl, ENFOR, ...)

# District heating networks (Cowi, ENFOR, Rambgll, DFF-EDB)
# Combined Heat and Power plants (Dong Energy)

# Heat Pumps in District Heating networks (HOFOR, Cowi,
ENFOR)

«# Rainfall Run-off Systems (DHI and Rambgll)
# Wastewater treatment plants (Kruger)

I DTU Compute ) CITIES

Centre for IT Intelligent Energy Systems



Example

Solar Power Forecasting in CITIES

I DTU Compute ) CITIES

Centre for IT Intelligent Energy Systems



Solar Power Forecating

* Grid connected PV-systems mainly
Installed on rooftops

* Average of output from 21 PV systems in
Braedstrup

g;l: Compute _ _ _ / CITI ES

artment of Applied Mathematics and Computer Science Centre for IT Intelligent Energy Systems



Method

2000

1500

1000

Lo

60000

40000

tod [seconds]

20000

day 300

* Based on MET forecasts and online readings of output

* Two-step method:
— 1) Transformation to atmospheric transmittance with statistically clear sky (see above),
—2) A dynamic model + adaptive quantile regression.

DTU Compute | | | / CITIES
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Power [W] Power [W] Power [\W] Power [W]

Power [W]

1000 2000

0

1000 2000
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1000 2000
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1000 2000
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Example

(quantile forecasts - up to 36h ahead)

1 — P
Ll
— P
; - = - 0.05 gquantile
L Y . = =« 095 gquantile
T T T T T
0000 Aprz1 06:00 12:00 18:00 00:00
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12:00 __ MNov 1 18:00 00:00 MNow 2 06:00 12:00 18:00 00:00
wilicCEo
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Adaptive correction method

10
B0
[=1a]u]
Global radiation

400

200

(///10
B0 15
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Adaptive correction method

DTU Compute
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Adaptive correction method
(correction function)

1.50

Time of day

0.59 0.78 0.96

0.41

3

0.2

I DTU Compute ) CITIES
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Adaptive correction method

1000 —]

g0

Boo
Global radiation

400 |

200 _J
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Use of MET forecasts for:

* Important aspects:
— Use the same MET

» Electricity Load
» Wind Power Production

, service(s)
» Solar Power Production Adaptivit
*» Gas Load c P ¢ Y
» District Heating Load - Lorrections
— Full probabilistic

L

Price forecasts
Urban Meteorologi
Grid operations

— 'Correlation' (auto- and
cross correlation)

L

L

I DTU Compute ‘/ CITIES
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Case study

Electrical Heating of Buildings;
Control of Load by Price

I DTU Compute ) CITIES
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Price responsivity

Flexibility is activated by adjusting the temperature reference
(setpoint)

Temperature
satpoint 0.8
adjustment

Maoi.

Price sensitivity line
with shope k

Probability of mode
7

Min.
0
I Standardized price S L
0 * 0 2 4 6 & 10 12 14 16 18 20 22
Hour of day
3_
2_41—\ Price
1 T T Std Price |
S e L [ e, e
-1k ! o ! ! I

« Standardized price is the % of change from a price reference,
computed as a mean of past prices with exponentially decaying weights.

« Occupancy mode contains a price sensitivity with its related comfort
boundaries. 3 different modes of the household are identified (work, home, night)

I DTU Compute / CITIES
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Two data

Olympic Pensinsula
project

* 27 houses during one year

* Flexible appliances: HVAC,
cloth dryers and water boilers

* 5-min prices, 15-min consumption
* Objective: limit max consumption

I DTU Compute
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Simulation framework
 Modular design

* Runge-Kutta solver (diff.
equations)

* Scalable (linear computation
time)

« Variable sam%mg rate

i CITI
> Centre for IT Intelligent Energy Systems



Aggregation (over 20 houses)

| — Aggregated consurnption [kKWh] |

5|
Oﬂm n nﬁl J_IM fIh & I I
225

12 195 20 205 21
Days

Price-responsive temperature setpoint [#C]

------- Original temnperature setpoint [C]

19 19.5 20 205 21 215 22 22.5 23
Days
10~
] | Frice L
5 ny |—J """"" Standardized price
O b
-5 | | | | | | | |
19 19.5 20 205 21 215 22 22.5 23
Days
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Identify price response
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Forecasted Response on
Price Step Change

Simulated
— 5 T T
i Consumption step response (Simulated)
5 0
]
3
3 50
[
(@)
Q
-10 : : : !
-5 0 5 10
Hours

Olympic Peninsula

B3 0.2 . .
= Consumption step response (Olympic Pen.)
S
5
o i
2 0
=}
e
S

_0.2 1 1 1 1 1

-10 -5 0 5 10 15 20
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Adaptive control setup

As the systems changes over time

Consumption
references

—_—>

I DTU Compute

Model parameters

Controller

Prices

System identification

1

System

Aggregated
consumption

@ >

1» CITIES
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Control performance

With a price penality avoiding its divergence

 Considerable reduction in max consumption
 Mean daily consumption shift

14

12r

Consumption [kW]
o0

Responsive

4r Unresponsive
2 1
0 5 10 15 20
o150t N
2 Generated
o )
100F ™ 7 e Desired level
0 5 10 15 20

Hour of day

I DTU Compute / CITIES
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