Intelligent Energy Systems Integration in Cities

Henrik Madsen and Niamh O'Connell Technical University of Denmark

(www.henrikmadsen.org + www.smart-cities-centre.org)

DTU Compute Department of Applied Mathematics and Computer Science

Danish Climate and Energy Policy / Goals

- 2020: 50 pct of electricity from wind power, and 35 pct of total energy consumption from renewable sources
- 2035: 100 pct of electricity and heating from renewable sources
- 2050: 100 pct of all (electricity, heating, transport, industry) from renewable sources

DTU Compute Department of Applied Mathematics and Computer Science

Potentials for renewable energy

- Scenario: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turbines?

DTU Compute Department of Applied Mathematics and Computer Science

Potentials for renewable energy

- Scenario: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turbines?
- Conclusion: Use intelligence
- Calls for Smart Cities Solutions.

DTU Compute

Department of Applied Mathematics and Computer Science

Wind integration in Denmark Notice – wind only:

Key figures for wind power*

	2013	2012
Wind power generation	11.1 billion kWh	10.3 billion kWh
Electricity consumption (including loss in the electricity grid)	33.5 billion kWh	34.1 billion kWh
Wind power share of electricity consumption the entire year	33.2%	30.1%
Wind power share of electricity consumption in December	54.8%	33.5%
Wind power capacity at the end of the year	4,792 MW	4,166 MW
Energy content of the wind	Approx. 93% of a standard year	Approx. 102% of a standard year
npute nent of Applied Mathematics and Computer Science	Energy, Cities, an May 12-14, 2014 – Fr	d the Control of Con ice. Sicily – Italy

Solar district heating in Denmark

Transition in the Energy World

The rapidly changing energy world calls for a the next generation of tools for simulation, planning, optimization, decision support, control and operation in Cities. These tools calls for research focusing on:

- Increasing penetration of variable RE in Cities
- Increasing ultra high energy efficiency buildings and controllable loads
- New data, information, communications and controls
- Electrification of transportation and alternative fuels
- Enable (virtual) energy storage by energy systems integration
- Interactions between electricity/thermal/fuels/data pathways
- Increasing system flexibility and intelligence

Project Ideas Background, Concepts, Methodology, Objectives and Partners

Concept

Integration based on city *data and IT solutions* leading to methods for *operation* of future energy systems in cities

CITIES – Hypothesis

The **central hypothesis** of CITIES is that by **intelligently integrating** currently distinct energy flows (heat, power, gas and biomass) in urban environments we can enable very large shares of renewables, and consequently obtain substantial reductions in CO2 emissions.

Intelligent integration will enable lossless 'virtual' storage on a number of different timescales.

Grey-box modelling concept

- Combines prior physical knowledge with information in data
- Equations and parameters are physically interpretable

Grey-box model building

Grey-Box Modelling

- Bridge the gap between physical and statistical modelling
- Provides methods for model identification
- Provides methods for model validation
- Provides methods for pinpointing model deficiencies
- Enables methods for a reliable description of the uncertainties, which implies that the same model can be used for k-step forecasting, simulation and control

Societal Objectives

To establish methods and realistic scenarios for ultimately achieving independent from fossil fuels by harnessing the latent flexibility of energy systems in Cities through *intelligence, integration*, and *planning*.

Scientific Objectives

To establish methodologies and models for design and operation of integrated electrical, thermal, fuel pathways at all scales using data

Systems Control Hierarchy

DTU Compute

Department of Applied Mathematics and Computer Science

Control Hierarchy

Day Ahead:

- _ Stoch. Programming based on eg. Scenarios
- _ Cost: Related to the market (one or two levels)
- _ Operational optimization also for the grid

Direct Control:

- _ Actuator: Power
- _ Cost: eg. MV, LQG, EMPC, ... (a single large problem)
- _ Two-way communication
- _ Models for DERs are needed
- _ Constraints for the DERs (calls for state est.)
- _ Contracts are complicated

Indirect Control:

- _ Actuator: Price
- _ Cost: GPC, LQG at high level, VaR-alike
- _ Cost: E-MPC at low (DER) level, ...
- One-way communication
- _ Models for DERs are not needed
- _ Simple 'contracts'

DTU Compute

Department of Applied Mathematics and Computer Science

Energy, Cities, and the Control of Complex Systems

Direct vs Indirect Control

Level	Direct Control (DC)	Indirect Control (IC)
III	$\min_{x,u} \sum_{k=0}^{N} \sum_{j=1}^{J} \phi_j(x_{j,k}, u_{j,k})$	$ \min_{\hat{z}, p} \sum_{k=0}^{N} \phi(\hat{z}_k, p_k) $ s.t. $\hat{z}_{k+1} = f(p_k) $
IV	$\downarrow_{u_1} \dots \downarrow_{u_J} \uparrow_{x_1} \dots \uparrow_{x_J}$ s.t. $x_{j,k+1} = f_j(x_{j,k}, u_{j,k}) \forall j \in J$	$\min_{u} \sum_{k=0}^{N} \phi_j(p_k, u_k) \forall j \in J$ s.t. $x_{k+1} = f_j(x_k, u_k)$

Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct control the optimization is globally solved at level III. Consequently the optimal control signals u_j are sent to all the J DER units at level IV. (IC) In indirect control the optimization at level III computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs optimize their own energy consumption taking into account p as the actual price of energy.

DTU Compute Department of Applied Mathematics and Computer Science

Forecast requirements

Day Ahead:

- —Forecasts of loads
- Forecast of Grid Capacity (using eg. DLR)
- Forecasts of production (eg. Wind and Solar)

• Direct Control: .

- Forecasts of states of DERs
- —Forecasts of load

Indirect Control:

- ___Forecasts of prices
- —Forecasts of load

DTU Compute

Department of Applied Mathematics and Computer Science

Energy, Cities, and the Control of Complex Systems

Which type of forecast to use?

Point forecasts
Conditional mean and covariances
Conditional quantiles
Conditional scenarios
Conditional densities
Stochastic differential equations

DTU Compute

Department of Applied Mathematics and Computer Science

Measures to obtain the goal

Interactions between power, gas, DH, and biomass systems

Case study Electrical Heating of Buildings Control of Load by Price

CITIES Solution: Demand Side Management

Lours

()

-10

Control of Energy Consumption

Control performance

With a price penality avoiding its divergence from power reference

- Considerable reduction in max consumption
- Mean daily consumption shift

DTU Compute

Department of Applied Mathematics and Computer Science

Energy, Cities, and the Control of Complex Systems

Control and Storage by Energy Systems Integration

- Operational (simplified) models, optimization and control
- (Virtual) storage principles:
 - _ Buildings provide storage up to, say, 10 hours ahead
 - _ District heating systems lead provide storage up to 2-3 days ahead
 - _ Gas systems provide seasonal storage

DTU Compute

Department of Applied Mathematics and Computer Science

Energy, Cities, and the Control of Complex Systems

DSM - Examples (from DK)

- Temperature control in houses (Samsung)
- HVAC systems (Grundfos, Samsung)
- Supermarket cooling (Danfoss)
- Electricity consumption in family houses (Saseco)
- District heating/cooling networks (EMD International)
- Combined Heat and Power plants (Dong Energy)
- Intellingent use of biomass
- Wastewater treatment plants (Kruger, Veolia)
- 🥔

DTU Compute Department of Applied Mathematics and Computer Science

Energy, Cities, and the Control of Complex Systems

Thanks to DSF (DSF – 1305-00027B) For more information: www.smart-cities-centre.org

DTU Compute Department of Applied Mathematics and Computer Science