

Statistics and Crystall Ball Techniques

... on the use of Hidden Markov Models

Henrik Madsen Professor

www.henrikmadsen.org

Contents

Applications of Hidden Markov Models for:

- Geolocation of fish
- Energy optimization of buildings
- Automatic dosing of insulin
- Energy systems integration

Case Study No. 1

Geolocation of Fish

Geolocation of fish

- Goal: Identify models for the movements of fish.
- GPS systems do not work under water.
- Data storage tags' for measuring the pressure (depth under the surface).
- Data gets available at capture of the fish.

Hidden Markov Model

• x(t): States (are not observed) – describes the evolution in time of the system

y(t): Observations

Typical application: Find the values for *x* !

Hidden Markov Model

The probability Φ for, that the fish at time t is in position x, is:

Systemet (generelt):
$$\frac{\partial \phi}{\partial t} = -\nabla (u\phi - D\nabla \phi)$$

Systemet (her): $\frac{\partial \phi}{\partial t} = D\left(\frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2}\right)$

Data is (as mentioned):

Observationer: Y_k : Dybden (til tidspunkt t_k)

- Bathymetry (depths)
- Time and place for release and capture
- Information about the tide system see the graph

egeology.blogfa.com

Observations

Measured sequence of depths from release to capture:

Where has the fish been?

Case Study No. 2

Characterising the Energy Performance of Buildings

Example

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)

Examples (2)

Measured versus predicted energy consumption for different dwellings

Energy Labelling of Buildings

- Today building experts make judgements of the energy performance of buildings based on drawings and prior knowledge.
- This leads to 'Energy labelling' of the building
- However, it is noticed that two independent experts can predict very different consumptions for the same house.

Model for the heat dynamics

 $k \times A_{\rm w} \times \Phi_{\rm s}$

- Measurements:
 - Indoor air temp
 - Radiator heat sup.
 - Ambient air temp
 - Solar radiations
- Hidden states are:
 - Heat accumulated in the building
 - k: Fraction of solar radiation entering the interior

DTU Compute Institut for Matematik og Computer Science

 $\Phi_{\rm h}$

-

DTU

Data

Measurements of:

- *y*_t Indoor air temperature
- T_a Ambient temperature
- Φ_h Heat input

Φ_s Global irradiance

SELECTION PROCEDURE

Simplest model

First extension: heater part

Start	Model _{Ti}				
$l(\theta; \mathcal{Y}_N)$	2482.6				
m	6				
1	Model _{TiTe}	Model _{TiTm}	Model _{TiTs}	Model _{TiTh}	-
$l(\theta; \mathcal{Y}_N)$	3628.0	3639.4	3884.4	3911.1	
m	10	10	10	10	пт
2					E

DTU Compute

Institut for Matematik og Computer Science Institut for Matematik og Computer Science

EVALUATE THE SIMPLEST MODEL

Inputs and residuals

Institut for Matematik og Computer Science

Inputs and residuals

۲.

DTU Compute Institut for Matematik og Computer Science

Final model for the heat dynamics

Again: HMM - or state space - model

Systemet: $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, \mathbf{u}_k, t, \boldsymbol{\theta})dt + \boldsymbol{\sigma}(\mathbf{u}_t, t, \boldsymbol{\theta})d\boldsymbol{\omega}_t$ Observationer: $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{u}_k, t_k, \boldsymbol{\theta}) + \mathbf{e}_k$

Model found using statistical modelling:

Institut for Matematik og Computer Science

Perspectives

- Identification of most problematic buildings
- Automatic energy labelling
- Recommendations:
 - Should they replace the windows?
 - Or put more insulation on the roof?
 - Or tigthen the building?
 - Should the wall against north be further insulated?
 - ۰۰۰۰۰ 🔶
- Better control of the heat supply

DTU

Perspectives (2)

"Skat, jeg kan se på k-værdierne, at vinduerne skal pudses" DTU Compute Institut for Matematik og Computer Science Case Study No. 3

Insulin – Glucose Models

Insulin – Glucose models

- Today a diabetic person must measure the blod succer in order to provide the correct dose of insulin
- A correct dose depends on a lot of factores like: activity, stress level, hormonale state, meals, etc.

Intelligent device (A) for optimal dosing of insulin (B) based on measurements of glucose (C and D)

DTU Compute Institut for Matematik og Computer Science

HMM or State Space Model

Model for a description of glucose-insulin relation:

Systemet:
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, \mathbf{u}_k, t, \boldsymbol{\theta})dt + \boldsymbol{\sigma}(\mathbf{u}_t, t, \boldsymbol{\theta})d\boldsymbol{\omega}_t$$

Observationer: $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{u}_k, t_k, \boldsymbol{\theta}) + \mathbf{e}_k$

Using appropriate statistical methods we can again :

Find the best model and the hidden states

Grey-box modelling concept

- Combines prior physical knowledge with information in data
- Equations and parameters are physically interpretable

Best model found ...

Human Insulin

Model Fits

Case Study No. 4

Intelligent and Integrated Energy Systems

DTU

Quote by B. Obama at the Climate Summit 2014 in New York:

We are the **first generation** affected by climate changes,

and we are the **last generation** able to do something about it!

- Scenario: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turbines?

- Scenario: We want to cover the worlds entire need for power using wind power
- How large an area should be covered by wind turbines?
- Conclusion: Use data intelligence
- Calls for IT / Big Data / Hidden Markov Models for Energy Systems Integration

Energy Systems Integration

Energy system integration (ESI) = the process of optimizing energy systems across multiple pathways and scales

ESI – Hypothesis

The **central hypothesis of ESI** is that by **intelligently integrating** currently distinct energy flows (heat, power, gas and biomass) in we can enable very large shares of renewables, and consequently obtain substantial reductions in CO2 emissions.

Intelligent integration will (for instance) enable lossless 'virtual' storage on a number of different time scales.

ESI – Research Challenges

To establish methodologies and models for operation of integrated electrical, thermal, fuel pathways at all scales

Modelling

Use of **Hidden Markov Models** for operation of future integrated energy system.

Smart-Energy OS

Energy Flexibility in Wastewater Treatment

DTU

Sewer System Control Goal

minimize overflow
$$+ p_{elspot}^T f(Q)$$

Sewer System Annual Elspot Savings

Hidden Markov Models

- Eksemples considered:
 - Geo-location of fish
 - Energy labelling and optimization
 - Control of insulin injection
 - Intelligent and integrated energy systems

In general: Hidden Markov Models are useful for observing phenomenas that we cannot otherwise observe

Thank you for your attention ...

And thanks to:

Søren Klim, Andreas Bærentzen, Sten Frandsen, Peder Bacher, Martin Wæver Petersen, John Bagterp Jørgensen,

