The Energy System in 2020, Data Analytics and ICT

Henrik Madsen

Trends

• Energy Systems 2020:

- Use of (smart) meters and many sensors
- Communication between energy systems
- Aggregation (on all scales)
- Intelligent data analytics
- Demand response
- Energy flexible automated manufacturing
- Big Data, IoT, IoS technologies
- Robust methods for planning and operation (wind and solar lead to more variability)

Adaptive methods for forecasting and control

Smart-Energy OS

ESI and Storage

- With more that 25 pct wind/solar power the main focus is on energy storage (rather than electricity)
- (Virtual) storage principles using ESI:
 - Buildings (thermal mass) can provide storage up to, say, 5-12 hours ahead
 - District heating/cooling systems can provide storage up to 1-3 days ahead
 - Gas systems can provide seasonal storage

Meter data and buildings

- Reliable Energy Signature
- Energy Labelling
- Automated Proposals for Energy Savings (buildings):
 - Replace the windows?
 - Put more insulation on the roof?
 - Is the house too untight?
 - **>**
- Integration of Solar and Wind Power using DSM

Discussion

- Intelligent Energy Systems Integration can provide (virtual) storage solution
- ICT methods for coupling of energy systems
- Big Data, ICT, IoT, Data Analytics, and an Energy-Systems
 Operation System (ES-OS) are essential for implementing future low carbon energy systems
- Focus on zero emission buildings and less on zero energy buildings (the same holds supermarkets, wastewater treatment plants, etc.)
- Intelligent use of sensor (and meter) data is important
- Cloud based solutions for forecasting and control
- A large potential in Demand Side Management using data analytics