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Introduction

� Various methods of advanced modelling are needed for an
increasing number of complex physical, chemical and biological
systems.

� For a model to describe the future evolution of the system, it
must

1. capture the inherently non-linear behavior of the system.
2. provide means to accommodate for noise due to approximation,

input, and measurement errors.

� Calls for methods that are capable of bridging the gap between
physical and statistical modelling.
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Which type of model to use?

� Simple / Complex
� Lumped / Distributed
� Linear / Non-linear
� Time-invariant / Time-varying
� Discrete / Continuous time
� Deterministic / Stochastic
� Black box / Grey box / White box
� Parametric / Non-parametric

Base the decision on
� Purpose
� Prior knowledge
� Available data
� Tools
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Nonlinear versus linear modelling

� The aim of the modelling effort may be generally expressed as
follows: Find a nonlinear function h such that {εt} defined by

h(Xt ,Xt−1, . . . ) = εt (1)

is a sequence of independent random variables.
� Suppose also that the model is causally invertible, i.e. the

equation above may be ’solved’ such that we may write

Xt = h′(εt , εt−1, . . . ). (2)
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Nonlinear vs. linear model buiding (cont.)

� Suppose that h′ is sufficiently well-behaved to be expanded in a
Taylor series

Xt = µ+

∞∑

k=0

gkεt−k +

∞∑

k=0

∞∑

l=0

gklεt−kεt−l

+

∞∑

k=0

∞∑

l=0

∞∑

m=0

gklmεt−kεt−lεt−m + . . . (3)

� The functions

µ = h′(0), gk = (
∂h′

∂εt−k
), gkl = (

∂2h′

∂εt−k∂εt−l
), etc. (4)

are called the Volterra series for the process {X}. The
sequences gk ,gkl , . . . are called the kernels of the Volterra
series.
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Non-linear vs. linear model building (cont.)

� For linear systems

gkl = gklm = gklmn = . . . = 0 (5)

� Hence the system is completely characterized by either

{gk} : Impulse response function

or

H(→) : Frequency response function
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Non-linear vs. linear model building (cont.)

� In general there is no such thing as a transfer function for
non-linear systems.

� However, an infinite sequence of generalized transfer functions
may be defined as

H1(ω1) =

∞∑

k=0

gk e−iω1k

H2(ω1, ω2) =

∞∑

k=0

∞∑

l=0

gkle−i(ω1k+ω2 l)

H3(ω1, ω2, ω3) =

∞∑

k=0

∞∑

l=0

∞∑

m=0

gklme−i(ω1k+ω2 l+ω3m)

...

Henrik Madsen www.smart-cities-centre.org 8



Non-linear vs. linear model building (cont.)

Let Ut and Xt denote the input and the output of a given system.
� For linear systems it is well known that

L1 If the input is a single harmonic Ut = A0eiω0t then the output is a
single harmonic of the same frequency, but with the amplitude
scaled by |H(ω0)| and the phase shifted by arg H(ω0).

L2 Due to the linearity, the principle of superposition is valid, and the
total output is the sum of the outputs corresponding to the
individual frequency components of the input. (Hence the system is
completely described by knowing the response to all frequencies –
that is what the transfer function supplies).

� For non-linear systems, however, neither of the properties (L1)
or (L2) hold.
NL1 For an input with frequency ω0, the output will, in general, contain

also components at the frequencies 2ω0, 3ω0, . . . (frequency
multiplication).

NL2 For two inputs with frequencies ω0 and ω1, the output will contain
components at frequencies ω0, ω1, (ω0 + ω1) and all harmonics of
the frequencies (intermodulation distortion).
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Conditional parametric ARX-model

yt =
∑

i∈Ly

ai (xt−m)yt−i +
∑

i∈Lu

bi (xt−m)ut−i + et , (6)

� The functions ai (xt−m) and bi (xt−m) must be
estimated

� The model may be written as yt = zT
t θ(x t ) + et

Henrik Madsen www.smart-cities-centre.org 10



DH network principle
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Application

� One consumer consisting of 84 households
� Measurements:

− Flow at plant
− Temperature at plant
− Temperature at consumer
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Application - Models

� FIR-model

yt =

30∑

i=0

bi (xt )ut−i + et

� ARX-model

yt = a(xt )yt−1 +

15∑

i=3

bi (xt )ut−i + et
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Impulse Response of FIR-model (40%)
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Impulse Response - FIR model

Impulse Response: -0.1 to 0.7 oC in steps of 0.1 oC

—– Positive
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Impulse Response of ARX-model (40%)
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Characteristics

Characteristics
30%, 40%, 50%

Stationary
gain of FIR

Stationary
gain of ARX Pole of ARX
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Conclusions - Transfer function

� Time delay decreasing with increasing flow
� 6-15% temperature loss depending on flow
� Possible inaccuracy of the model at low flows (input design?)
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Model Predictive Controller for DH-systems

The netpoint temperature control is implemented using the XGPC
controller:

min
ut

J(ΓΓΓ t ,ΛΛΛt ,ΩΩΩt ; t ,ut ) = E [(y t − y0
t )TΓΓΓ t (y t − y0

t ) + uT
t ΛΛΛtut + 2ωωωT

t ut ]

y t = H tut + v t + et

The flow rate control is implemented using the relation
pt = cw qt (T s

t − T r
t ). The supply temperature is found as

T s
t+1 =

Nu∑

i=1

wi

[
T̂ r

t+i|t +
p̂t+i|t

cw q0

]
. (7)
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Implementation of Models and Controllers

Installed at about 15 DH plants in Denmark. Observed savings are 10
- 20 pct of the heat loss, and the pay-back time is from 5 month to 2
years.
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Why Stochastic Differential Equations?
Problem Scenario

Ordinary differential equation

dA = −KA dt

Y = A + ε
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ODE

0 5 10 15 20 25
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time

C
on

ce
nt

ra
tio

n 
−

 lo
gs

ca
le

Data
ODE

� Autocorrelated residuals!!
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Problem Scenario

Stochastic differential
equation

dA = −KA dt + dw

Y = A + e
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ODE vs SDE
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� Uncorrelated residuals
� System noise
� Measurement noise
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ODE vs SDE
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� Uncorrelated residuals
� System noise
� Measurement noise
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Grey box modelling of oxygen concentration
- A sketch of the physical system
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Grey box modelling of oxygen concentration
- A white box model

Model found in the literature:

dC
dt

=
K

h
√

h
(Cm(T )− C) + P(I)− R(T )

P(I) = PmE0
I

Pm + E0I
(= βI)

R(T ) = R15θ
T−15 [mg/l]

Cm(T ) = 14.54− 0.39T + 0.01T 2 [mg/l]

� Simple - however, a non-linear model.
� Uncertainty of prediction does not depend on horizon.
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Model validation

The autocorrelation and partial autocorrelation function for the
residuals from the first order model
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Grey box model of oxygen concentration

The following nonlinear state space (Hidden Markov) model has been
found:
***The system equation:

[
dC
dL

]
=

[
K

h
√

h
−Kc

K3 −Kl

] [
C
L

]
dt +

[
β

√
CKb
h

0 γ

] [
I

Pr

]
dt

+

[
K

h
√

h
Cm(T )− R(T )

0

]
dt +

[
dW1(t)
dW2(t)

]

***The observation equation:

Cr =
[
1 0

] [C
L

]
+ e
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Model types

� White box models
- the model structure is known and deterministic.
- uncertainty is discarded and the model tends to be overspecified.

� Black box models
- data based models - input/output models.
- the model and its parameters have little physical significance.

� Grey box models
- between white and black box models
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The grey box modelling concept

� Combines prior physical knowledge with information in data.
� The model is not completely described by physical equations, but

equations and the parameters are physically interpretable.
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Why use grey box modelling?

� Prior physical knowledge can be used.
� Non-linear and non-stationary models are easily formulated.
� Missing data are easily accommodated.
� It is possible to estimate environmental variables that are not

measured.
� Available physical knowledge and statistical modelling tools is

combined to estimate the parameters of a rather complex
dynamic system.

� The parameters contain information from the data that can be
directly interpreted by the scientists.

� Fewer parameters→ more power in the statistical tests.
� The physical expert and the statistician can collaborate in the

model formulation.
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Stochastic Differential Equations (SDE’s)

� Ordinary Differential Equations (ODE’s) provide deterministic
description of a system:

dX t = f (X t ,U t , t)dt t ≥ 0.

where f is a known function of the time t and the state X and
input U.

� To describe the deviation between the ODE and the true
variation of the state an additive noise term is introduced.

� Physical arguments for including the noise part:
1. Modelling approximations.
2. Unrecognized inputs.
3. Measurements of the input are noise corrupted.
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The continuous-discrete time non-linear stochastic state
space model
The system equation (set of Itô stochastic differential eqs.)

dX t = f (X t ,U t , θθθ) dt + G(X t ,U t , θθθ) dW t , X t0 = X 0

Notation
X t ∈ Rn State vector
U t ∈ Rr Known input vector
f Drift term
G diffusion term
W t Wiener process of dimension, d , with incre-

mental covariance Qt

θθθ ∈ ΘΘΘ ⊆ Rp Unknown parameter vector
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The observation equation

The observations are in discrete time, functions of state, input, and
parameters, and are subject to noise:

Y ti = h(X ti ,U ti , θθθ) + eti

Notation
Y ti ∈ Rm Observation vector
h Observation function
eti ∈ Rm Gaussian white noise with covariance ΣΣΣti

Observations are available at the time points ti : t1 < . . . < ti < . . . < tN
X 0,W t ,eti assumed independent for all (t , ti ), t 6= ti
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Stochastic Differential Equations (SDE’s)

� The line demonstrates a model prediction, whereas the dots
denote typical observations.

� Notice: Autocorrelated residuals are most often seen
- this calls for SDE’s.

� A situation as sketched above calls for using Stochastic
Differential Equations (SDE’s) as an alternative to Ordinary
Differential Equations (ODE’s).
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ODE’s - Characteristics

� Ordinary Differential Equations (ODE’s) provide deterministic
description of a system:

dx t = f (x t ,ut , t)dt t ≥ 0.

where f is a deterministic function of the time t and the state x .
� The solution to an ODE is a (deterministic) function
� For systems described by ODEs the future states can be

predicted without any error!
� Parameters can calibrated using curve fitting methods (... but

please check for uncorrelated residuals if you call it an estimate,
if you are using statistical tests, or if you provide confidence
intervals!).

� Consequently MLE and Prediction Error Methods are seldom the
best methods for ’tuning the parameters’.
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SDE’s - Characteristics

� To describe the deviation between the ODE and the true
variation of the state a system noise term is introduced, ie.

dX t = f (X t ,ut , t) dt + G(X t ,ut ) dW t ,

� Reasons for including the system noise:
1. Modelling approximations.
2. Unrecognized inputs.
3. Measurements of the input are noise corrupted.

� For an SDE’s the solutions is a stochastic processes
� This implies that the future values are not know exactly (the

outcomes are described a probability density function).
� Here proper statistical methods like MLE and Prediction Error

Methods are appropriate for estimating the parameters – and we
can easily test for hypotesis using statistical tests.
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Advantages of Grey-box models (formulated as SDE’s)

� Provides a decomposition of the total error into process error and
measurement error.

� Facilitates use of statistical tools for model validation.
� Provides a systematic framework for pinpointing model

deficiencies – will be demonstrated later on.
� Covariances of system error and measurement error are

estimated.
� SDE based estimation gives more accurate and reliable

parameter estimates than ODE based estimation.
� SDEs give more correct (more accurate and realistic) predictions

and simulations.
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Methods for Identification, Estimation and Model Validation

� Model Identification: See the next slides.
� Parameter Estimation:

− Maximum Likelihood Methods
� Model testing/selections:

− Test for significiant parameters (typically t-tests)
− Test for model reductions (typically likelihood ratio tests)
− Alternatively: Information criteria

� Model Validation:
− Test whether the estimated model describes the data.
− Autocorrelation functions – or Lag Dependent Functions.
− Other classical methods ...
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Identification of model order (here: number of states)

Use the autocorrelation and partial autocorrelation functions
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Identification input variables and eg. time delays

Use the Pre-whitening procedure and cross-correlation (pp.
223-226 in Time Series Analysis book) or Ridge regression (pp.
227-228 in TSA).
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Identification of functional relations

Use non-parametric methods (kernels, smoothing splines, etc.)
to estimate the conditional mean and the conditional variance.
� The conditional mean enters the drift term.
� The conditional variance enters the diffusion term.
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Identification of Model Structure

� The diffusion term gives information for pinpointing model
deficiencies.

� Assume that we based on ’large’ values of relevant diffusion
term(s) suspect r ∈ θθθ to be a function of the states, input or time.

� Then consider the extended state space model:

dX t = f (X t ,U t , θθθ) dt + G(X t ,U t , θθθ) dW t , X t0 = X 0

drt = dW ∗
t

Y ti = h(X ti ,U ti , θθθ) + eti

(8)

which corresponds to a random walk description of rt .
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Identification of Model Structure

� Do we observe a significiant reduction of the relevant diffusion
term(s)?

� In that case calculate the smoothed state estimate r̂t |N (use for
instance the software tool CTSM-R - see slides by Rune Juhl).

� Plot r̂t |N versus the states, inputs and time.
� Identify a possible functional relationship.
� Build that functional relationship into the stochastic state space

model.
� Estimate the model parameters and evaluate the improvement –

using e.g. likelihood ratio tests.
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This part of the lecture

� The likelihood principle
� Point estimation theory
� The likelihood function
� The score function
� The information matrix
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The beginning of likelihood theory

� Fisher (1922) identified the likelihood function as the key
inferential quantity conveying all inferential information in
statistical modelling including the uncertainty

� The Fisherian school offers a Bayesian-frequentist compromise
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A motivating example

Suppose we toss a thumbtack (used to fasten up documents to a
background) 10 times and observe that 3 times it lands point up.
Assuming we know nothing prior to the experiment, what is the
probability of landing point up, θ?

� Binomial experiment with y = 3 and n = 10.

� P(Y=3;10,3,0.2) = 0.2013

� P(Y=3;10,3,0.3) = 0.2668

� P(Y=3;10,3,0.4) = 0.2150
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A motivating example

By considering Pθ(Y = 3) to be a function of the unknown parameter
we have the likelihood function:

L(θ) = Pθ(Y = 3)

In general, in a Binomial experiment with n trials and y successes,
the likelihood function is:

L(θ) = Pθ(Y = y) =

(
n
y

)
θy (1− θ)n−y
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A motivating example4 The likelihood principle
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Figure 2.1: Likelihood function of the success probability θ in a binomial experiment
with n = 10 and y = 3.

where const indicates a term that does not depend on θ. By solving
∂ logL(θ)

∂θ = 0, it is readily seen that the maximum likelihood estimate (MLE)
for θ is θ̂(y) = y

n . In the thumbtack case where we observed Y = y = 3 we
obtain θ̂(y) = 0.3. The random variable θ̂(Y ) = Y

n is called a maximum
likelihood estimator for θ.

The likelihood principle is not just a method for obtaining a point estimate of
parameters; it is a method for an objective reasoning with data. It is the entire
likelihood function that captures all the information in the data about a certain
parameter, not just its maximizer. The likelihood principle also provides the
basis for a rich family of methods for selecting the most appropriate model.

Today the likelihood principles play a central role in statistical modelling
and inference. Likelihood based methods are inherently computational. In
general numerical methods are needed to find the MLE.

We could view the MLE as a single number representing the likelihood
function; but generally, a single number is not enough for representing a
function. If the (log-)likelihood function is well approximated by a quadratic
function it is said to be regular and then we need at least two quantities;
the location of its maximum and the curvature at the maximum. When our
sample becomes large the likelihood function generally does become regular.
The curvature delivers important information about the uncertainty of the
parameter estimate.

Before considering the likelihood principles in detail we shall briefly consider
some theory related to point estimation.

Figure: Likelihood function of the success probability θ in a binomial
experiment with n = 10 and y = 3.
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A motivating example

It is often more convenient to consider the log-likelihood function. The
log-likelihood function is:

log L(θ) = y log θ + (n − y) log(1− θ) + const

where const indicates a term that does not depend on θ.
By solving

∂ log L(θ)

∂θ
= 0

it is readily seen that the maximum likelihood estimate (MLE) for θ is

θ̂(y) =
y
n

=
3
10

= 0.3
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The likelihood principle

� Not just a method for obtaining a point estimate of parameters.

� It is the entire likelihood function that captures all the information
in the data about a certain parameter.

� Likelihood based methods are inherently computational. In
general numerical methods are needed to find the MLE.

� Today the likelihood principles play a central role in statistical
modelling and inference.
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Some syntax

� Multivariate random variable: Y = {Y1,Y2, ...,Yn}T

� Observation set: {y = y1, y2, . . . , yn}T

� Joint density: {fY(y1, y2, . . . , yn; θθθ)}θθθ∈Θk

� Estimator (random) θ̂θθ(Y)

� Estimate (number/vector) θ̂θθ(y)
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Point estimation theory

We will assume that the statistical model for y is given by parametric
family of joint densities:

{fY(y1, y2, . . . , yn; θθθ)}θθθ∈Θk

Remember that when the n random variables are independent, the
joint probability density equals the product of the corresponding
marginal densities or:

f (y1, y2, ...yn) = f1(y1) · f2(y2) · . . . · fn(yn)
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Point estimation theory

Definition (Unbiased estimator)

Any estimator θ̂θθ = θ̂θθ(Y ) is said to be unbiased if

E[θ̂θθ] = θθθ

for all θθθ ∈ Θk .

Definition (Minimum mean square error)

An estimator θ̂θθ = θ̂θθ(Y ) is said to be uniformly minimum mean square
error if

E
[
(θ̂θθ(Y )− θθθ)(θ̂θθ(Y )− θθθ)T

]
≤ E

[
(θ̃θθ(Y )− θθθ)(θ̃θθ(Y )− θθθ)T

]

for all θθθ ∈ Θk and all other estimators θ̃θθ(Y ).
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Point estimation theory

� By considering the class of unbiased estimators it is most often
not possible to establish a suitable estimator.

� We need to add a criterion on the variance of the estimator.

� A low variance is desired, and in order to evaluate the variance a
suitable lower bound is given by the Cramer-Rao inequality.
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Point estimation theory

Theorem (Cramer-Rao inequality)
Given the parametric density fY (y ; θθθ), θθθ ∈ Θk , for the observations Y . Subject
to certain regularity conditions, the variance of any unbiased estimator θ̂θθ(Y )
of θθθ satisfies the inequality

Var
[
θ̂θθ(Y )

]
≥ i−1(θθθ)

where i(θθθ) is the Fisher information matrix defined by

i(θθθ) = E

[(
∂ log fY (Y ; θθθ)

∂θθθ

)(
∂ log fY (Y ; θθθ)

∂θθθ

)T
]

and Var
[
θ̂θθ(Y )

]
= E

[
(θ̂θθ(Y )− θθθ)(θ̂θθ(Y )− θθθ)T

]
.
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Point estimation theory

Definition (Efficient estimator)

An unbiased estimator is said to be efficient if its covariance is equal
to the Cramer-Rao lower bound.

Dispersion matrix

The matrix Var
[
θ̂θθ(Y )

]
is often called a variance covariance matrix

since it contains variances in the diagonal and covariances outside
the diagonal. This important matrix is often termed the Dispersion
matrix.
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The likelihood function

� The likelihood function is built on an assumed parameterized
statistical model as specified by a parametric family of joint
densities for the observations Y = (Y1,Y2, ...,Yn)T .

� The likelihood of any specific value θθθ of the parameters in a
model is (proportional to) the probability of the actual outcome,
Y1 = y1,Y2 = y2, ...,Yn = yn, calculated for the specific value θθθ.

� The likelihood function is simply obtained by considering the
likelihood as a function of θθθ ∈ Θk .
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The likelihood function

Definition (Likelihood function)

Given the parametric density fY (y , θθθ), θθθ ∈ ΘP , for the observations
y = (y1, y2, . . . , yn) the likelihood function for θθθ is the function

L(θθθ; y) = c(y1, y2, . . . , yn)fY (y1, y2, . . . , yn; θθθ)

where c(y1, y2, . . . , yn) is a constant.

The likelihood function is thus (proportional to) the joint probability
density for the actual observations considered as a function of θθθ.
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The log-likelihood function

� Very often it is more convenient to consider the log-likelihood
function defined as

l(θθθ; y) = log(L(θθθ; y)).

� Sometimes the likelihood and the log-likelihood function will be
written as L(θθθ) and l(θθθ), respectively, i.e. the dependency on y is
suppressed.
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The information matrix

Definition (Observed information)

The matrix

j(θθθ; y) = −
∂2

∂θθθ∂θθθT l(θθθ; y)

with the elements

j(θθθ; y)ij = −
∂2

∂θi∂θj
l(θθθ; y)

is called the observed information corresponding to the observation
y , evaluated in θ̂θθ.

The observed information is thus equal to the Hessian (with opposite
sign) of the log-likelihood function evaluated at θθθ. The Hessian matrix
is simply (with opposite sign) the curvature of the log-likelihood
function.
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Example: Likelihood function for mean of normal
distribution

An automatic production of a bottled liquid is considered to be stable.
A sample of three bottles were selected at random from the
production and the volume of the content volume was measured. The
deviation from the nominal volume of 700.0 ml was recorded.

The deviations (in ml) were 4.6; 6.3; and 5.0.
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Example: Likelihood function for mean of normal
distribution

First a model is formulated

i Model: C+E (center plus error) model, Y = µ+ ε

ii Data: Yi = µ+ εi

iii Assumptions:

− Y1,Y2,Y3 are independent

− Yi ∼ N(µ, σ2)

− σ2 is known, σ2 = 1,

Thus, there is only one unknown model parameter, µY = µ.
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Example: Likelihood function for mean of normal
distribution

The joint probability density function for Y1,Y2,Y3 is given by

fY1,Y2,Y3 (y1, y2, y3;µ) =
1√
2π

exp
[
− (y1 − µ)2

2

]
× 1√

2π
exp

[
− (y2 − µ)2

2

]
× 1√

2π
exp

[
− (y3 − µ)2

2

]
which for every value of µ is a function of the three variables y1, y2, y3.

Remember that the normal probability density is: f (y ;µ, σ2) = 1√
2πσ

exp
[
− (y−µ)2

2σ2

]
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Example: Likelihood function for mean of normal
distribution

Now, we have the observations, y1 = 4.6; y2 = 6.3 and y3 = 5.0, and
establish the likelihood function

L4.6,6.3,5.0(µ) = fY1,Y2,Y3 (4.6, 6.3, 5.0;µ)

=
1√
2π

exp
[
− (4.6− µ)2

2

]
× 1√

2π
exp

[
− (6.3− µ)2

2

]
× 1√

2π
exp

[
− (5.0− µ)2

2

]

The function depends only on µ.
Note that the likelihood function expresses the infinitesimal probability
of obtaining the sample result (4.6,6.3,5.0) as a function of the
unknown parameter µ.
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Example: Likelihood function for mean of normal
distribution

Reducing the expression one finds

L4.6,6.3,5.0(µ) =
1

(
√

2π)3
exp

[
−1.58

2

]
exp

[
−3(5.3− µ)2

2

]
=

1
(
√

2π)3
exp

[
−1.58

2

]
exp

[
−3(ȳ − µ)2

2

]

which shows that (except for a factor not depending on µ), the
likelihood function does only depend on the observations (y1, y2, y3)
through the average ȳ =

∑
yi/3.
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Example: Likelihood function for mean of normal
distribution10 The likelihood principle
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Figure 2.2: The likelihood function for µ given the observations y1 = 4.6; y2 = 6.3
and y3 = 5.0.

Sufficient statistic

The primary goal in analysing observations is to characterise the information in
the observations by a few numbers. A statistics t(Y1, Y2, . . . , Yn) is a function
of the observations. In estimation a sufficient statistic is a statistic than
contains all the information in the observations.

Definition 2.5 (Sufficient statistic)
A (possibly vector-valued) function t(Y1, Y2, . . . , Yn) is said to be a sufficient
statistic for a (possibly vector-valued) parameter, θ, if the probability density
function for t(Y1, Y2, . . . , Yn) can be factorized into a product

fY1,...,Yn
(y1, . . . , yn; θ) = h(y1, . . . , yn)g(t(y1, y2, . . . , yn); θ)

with the factor h(y1, . . . , yn) not depending on the parameter θ, and the
factor g(t(y1, y2, . . . , yn); θ) only depending on y1, . . . , yn through the function
t(·, ·, . . . , ·). Thus, if we know the value of t(y1, y2, . . . , yn), the individual
values y1, . . . , yn do not contain further information about the value of θ.

Roughly speaking, a statistic is sufficient if we are able to calculate the
likelihood function (apart from a factor) only knowing t(Y1, Y2, . . . , Yn).

Example 2.5 (Sufficiency of the sample mean)
Consider again the the situation from Example 2.4. One obtains more general
insight if we just use the symbols (y1, y2, y3) for the data values. Using this
notation, the likelihood function is

Figure: The likelihood function for µ given the observations y1 = 4.6; y2 = 6.3
and y3 = 5.0.
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Invariance property

Theorem (Invariance property)

Assume that θ̂θθ is a maximum likelihood estimator for θθθ, and let
ψψψ = ψψψ(θθθ) denote a one-to-one mapping of Ω ⊂ Rk onto Ψ ⊂ Rk .
Then the estimator ψψψ(θ̂θθ) is a maximum likelihood estimator for the
parameter ψψψ(θθθ).

The principle is easily generalized to the case where the mapping is
not one-to-one.
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Distribution of the ML estimator

Theorem (Distribution of the ML estimator)
We assume that θ̂θθ is consistent. Then, under some regularity conditions,

θ̂θθ − θθθ → N(0, i(θθθ)−1)

where i(θθθ) is the expected information or the information matrix.

The results can be used for inference under very general conditions.
As the price for the generality, the results are only asymptotically
valid.

� Asymptotically the variance of the estimator is seen to be equal
to the Cramer-Rao lower bound for any unbiased estimator.

� The practical significance of this result is that the MLE makes
efficient use of the available data for large data sets.
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Distribution of the ML estimator

In practice, we would use

θ̂ ∼ N(θ, j−1(θ̂θθ))

where j(θ̂θθ) is the observed (Fisher) information.

This means that asymptotically

i) E [θ̂θθ] = θθθ

ii) D[θ̂θθ] = j−1(θ̂θθ)
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Distribution of the ML estimator

� The standard error of θ̂i is given by

σ̂θ̂i
=

√
Varii [θ̂]

where Varii [θ̂] is the i’th diagonal term of j−1(θ̂θθ)

� Hence we have that an estimate of the dispersion
(variance-covariance matrix) of the estimator is

D[θ̂θθ] = j−1(θ̂θθ)

� An estimate of the uncertainty of the individual parameter
estimates is obtained by decomposing the dispersion matrix as
follows:

D[θ̂θθ] = σ̂σσθ̂θθRσ̂σσθ̂θθ

into σ̂σσθ̂θθ, which is a diagonal matrix of the standard deviations of
the individual parameter estimates, and R, which is the
corresponding correlation matrix. The value Rij is thus the
estimated correlation between θ̂i and θ̂j .
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The Wald Statistic

A test of an individual parameter

H0 : θi = θi,0

is given by the Wald statistic:

Zi =
θ̂i − θi,0

σ̂θ̂i

which under H0 is approximately N(0,1)-distributed.
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Example: Quadratic approximation of the log-likelihood18 The likelihood principle
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Figure 2.3: Quadratic approximation of the log-likelihood function.

Example 2.7 (Quadratic approximation of the log-likelihood)
Consider again the situation from Example 2.1 where the log-likelihood
function is

l(θ) = y log θ + (n− y) log(1− θ) + const

The score function is
l′(θ) =

y

θ
− n− y

1− θ
,

and the observed information

j(θ) =
y

θ2
+

n− y

(1− θ)2
.

For n = 10, y = 3 and θ̂ = 0.3 we obtain

j(θ̂) = 47.6

The log-likelihood function and the corresponding quadratic approximation
are shown in Figure 2.3a. The approximation is poor as can be seen in the
figure. By increasing the sample size to n = 100, but still with θ̂ = 0.3, the
approximation is much better as seen in Figure 2.3b.

At the point θ̂ = y
n we have

j(θ̂) =
n

θ̂(1− θ̂)

and we find the variance of the estimate

Var
[
θ̂
]
= j−1(θ̂) =

θ̂(1− θ̂)

n
.

Figure: Quadratic approximation of the log-likelihood function.
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Likelihood ratio tests

� Want to know the distribution of D when assuming H0 (model B).
� It is sometimes possible to calculate the exact distribution. This

is for instance the case for the General Linear Model for
Gaussian data.

� In most cases, however, we must use following important result
regarding the asymptotic behavior.

Theorem (Wilk’s Likelihood Ratio test)

The random variable D = 2(`A(θ̂θθA,Y )− `B(θ̂θθB,Y )) converges in law
to a χ2 random variable with f = (dim(ΩA)− dim(ΩB)) degrees of
freedom, i.e.,

D → χ2(f )

under H0.
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Flexhouse layout
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RC-diagram ofte used for illustrating linear models
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Model A

RiaTi

TaΦh CiAwΦs

Aw is the effective window area.

Henrik Madsen www.smart-cities-centre.org 77



Model Validation for Model A

Autocorrelation function and Periodogram for the residuals.
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Model is seen not to be adequate.

Henrik Madsen www.smart-cities-centre.org 78



Model E

After some steps: (Notice that eg. the electric heating system is
included)
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Model Validation for Model E.
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It is concluded that the model is adequate.
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Continuous Time Stochastic Modelling (CTSM-R)

� The parameter estimation is performed by using the software
CTSM-R.

� The software has been developed at DTU Compute
� Download from www.ctsm.info (see also slides by Rune Juhl)
� The program returns the uncertainty of the parameter estimates

as well.
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The estimation procedure (CTSM-R)

CTSM-R is based on
� The Extended Kalman Filter
� Approximate likelihood estimation

and provides eg.
� Likelihood testing for nested models
� Calculations of smoothen state E [X t |YT ]

� Calculations of k-step predictions E [X t |Yt−k ].
� Calculations of noise free simulations E [X t |Yt0 ]

Henrik Madsen www.smart-cities-centre.org 82



The estimation procedure (CTSM-R)
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The continuous-discrete time stochastic state space
formulation

General formulation

dx t =f (x t ,ut , θθθ, t)dt + σσσ(x t ,ut , θθθ, t)dw t

yk =h(x tk ,utk , θθθ, ek , tk ),

where
� x t is the continuous time state and yk ∈ Rl is the discrete time

observations.
� ut ∈ Rr is the inputs
� θθθ ∈ Rp is a parameter vector
� ek ∈ Rl is a random observation error.

Henrik Madsen www.smart-cities-centre.org 83



The estimation procedure (CTSM) - Limitations

Most general set up in CTSM

dx t =f (x t ,ut , θθθ, t)dt + σσσ(ut , θθθ, t)dw t

yk =h(x tk ,utk , θθθ, tk ) + ek ,

where
� σσσ ∈ Rn×n is a quadratic matrix, independent of the state
� ek ∼ N(0,Sk (θθθ,uk )) is a Gaussian random variable.

This limitation can in most cases be solved using the Lamperti
Transformation - see the reference list later on.
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Transformation of the State Space 1

Consider the system equation

dx t =f (x t ,ut , θθθ, t)dt + σσσ(x t ,ut , θθθ, t)R(ut , θθθ, t)dw t ,

where R(ut , θθθ, t) ∈ Rn×n is any matrix function and σσσ ∈ Rn×n is a
diagonal matrix

σii (x t ,ut , θθθ, t) = σi (xi,t ,ut , θθθ, t)
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Transformation of the State Space 2

Choose the transformation

zi,t = ψi (xi,t ,ut , θθθ, t) =

∫
dξ

σi (ξ,ut , θθθ, t)

∣∣∣∣∣
ξ=xi

,

then by Itô’s lemma zi is also an Itô process given by

dzi,t =
∂

∂t
ψi (·, t)dt +

fi (·)
σi (·)

dt −
1
2
σi (·)

n∑

j=1

[R(·)]2i,j dt

+

n∑

j=1

[R(·)]i,j dwj ,

where the diffusion term is now independent of the state zi .
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Summary

By applying the grey box modelling approach
� physical/prior knowledge and information in data are combined,

ie. we have bridged the gap between physical and statistical
modelling.

� many statistical, mathematical and physical methods for model
validation and structure modification become available.

� parameter estimates have physical significance - seldom the
case for black box models.

� we obtain more accurate predictions and more realistic
prediction intervals.

� we obtain realistic simulations (ODE based models do not
provide a reasonable framework for simulations)

Henrik Madsen www.smart-cities-centre.org 87



Some References - Generic

� H. Madsen: Time Series Analysis, Chapman and Hall, 392 pp, 2008.

� H. Madsen and P. Thyregod (2011): An Introduction to General and Generalized Linear Models, Chapman and Hall, 340 pp.

� J.M. Morales, A.J. Conejo, H. Madsen, P. Pinson, M. Zugno: Integrating Renewables in Electricity Markes, Springer, 430 pp., 2013.

� H.Aa. Nielsen, H. Madsen: A generalization of some classical time series tools, Computational Statistics and Data Analysis, Vol.
37, pp. 13-31, 2001.

� H. Madsen, J. Holst: Estimation of Continuous-Time Models for the Heat Dynamics of a Building, Energy and Building, Vol. 22, pp.
67-79, 1995.

� P. Sadegh, J. Holst, H. Madsen, H. Melgaard: Experiment Design for Grey Box Identification, Int. Journ. Adap. Control and Signal
Proc., Vol. 9, pp. 491-507, 1995.

� P. Sadegh, L.H. Hansen, H. Madsen, J. Holst: Input Design for Linear Dynamic Systems using Maxmin Criteria, Journal of
Information and Optimization Sciences, Vol. 19, pp. 223-240, 1998.

� J.N. Nielsen, H. Madsen, P.C. Young: Parameter Estimation in Stochastic Differential Equations; An Overview, Annual Reviews in
Control, Vol. 24, pp. 83-94, 2000.

� N.R. Kristensen, H. Madsen, S.B. Jørgensen: A Method for systematic improvement of stochastic grey-box models, Computers
and Chemical Engineering, Vol 28, 1431-1449, 2004.

� N.R. Kristensen, H. Madsen, S.B. Jørgensen: Parameter estimation in stochastic grey-box models, Automatica, Vol. 40, 225-237,
2004.

� J.B. Jørgensen, M.R. Kristensen, P.G. Thomsen, H. Madsen: Efficient numerical implementation of the continuous-discrete
extended Kalman Filter, Computers and Chemical Engineering, 2007.

� K.R. Philipsen, L.E. Christiansen, H. Hasman, H. Madsen: Modelling conjugation with stochastic differential equations, Journal of
Theoretical Biology, Vol. 263, pp. 134-142, 2010.

Henrik Madsen www.smart-cities-centre.org 88



Some References - Heat Dynamics of Buildings

� H. Madsen, J. Holst: Estimation of Continuous-Time Models for the Heat Dynamics of a Building, Energy and Building, Vol. 22, pp.
67-79, 1995.

� B. Nielsen, H. Madsen: Identification of Transfer Functions for Control of Greenhouse Air Temperature. J. Agric. Engng. Res., Vol.
60, pp. 25-34. 1995.

� K.K. Andersen, H. Madsen, L. Hansen: Modelling the heat dynamics of a building using stochastic differential equations, Energy
and Buildings, Vol. 31, pp. 13-24, 2000.

� K.K. Andersen, O.P. Palsson, H. Madsen, L.H. Knudsen: Experimental design and setup for heat exchanger modelling,
International Journal of Heat Exchangers, Vol. 1, pp. 163-176, 2001.

� H.Aa. Nielsen, H. Madsen: Modelling the heat consumption in district heating systems using a grey-box approach, Energy and
Buildings, Vol. 38, pp. 63-71, 2006.

� M.J. Jiménez, H. Madsen: Models for Describing the Thermal Characteristics of Building Components, Building and Energy, Vol.
43, pp. 152-162, 2008.

� M.J. Jiménez, H. Madsen, K.K. Andersen: Identification of the Main Thermal Characteristics of Building Components using
MATLAB , Building and Energy, Vol. 43, pp. 170-180, 2008.

� N. Friling, M.J. Jimenez, H. Bloem, H. Madsen: Modelling the heat dynamics of building integrated and ventilated photovoltaic
modules, Energy and Building, Vol. 41(10), pp. 1051-1057, 2009.

� P. Bacher, H. Madsen: Identifying suitable models for the heat dynamics of buildings, Vol. 43, pp. 1511-1522, 2011.

� O. Corradi, H. Ochesenfeld, H. Madsen, P. Pinson, Controlling Electricity Consumption by Forecasting its Response to Varying
Prices, IEEE Transactions, Vol. 8, pp. 421-429, 2013.

� P.H. Delff Andersen, A. Iversen, H. Madsen, C. Rode: Dynamic Modeling of Presence of Occupants using Inhomogeneous Markov
Chains, Energy and Buildings, Vol. 69, pp. 213-223, 2014.

� I. Naveros, P. Bacher, D.P. Ruiz, M.J. Jimenez, H. Madsen: Setting up and validating a complex model for a simple homogeneous
wall, Energy and Buildings, Vol. 70,pp. 303-317, 2014.

� See www.henrikmadsen.org for more articles and for downloads

Henrik Madsen www.smart-cities-centre.org 89


	Introduction
	Selection of modelling framework
	Nonlinear versus linear modelling
	Conditional Parametric Models
	Why Stochastic Differential Equations?
	Grey Box Modelling
	The Stochastic State Space Model

	Model Identification, Estimation, Selection and Validation
	Identification of model order
	Identification of functional relation

	The likelihood principle
	Estimation – The maximum likelihood principle
	The information matrix
	Tests for individual parameters
	Likelihood ratio tests

	Model Validation
	Software
	Summary

