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Outline

e Integrated energy planning

e MILP model used
» Limitations of the model

e Case study: Singapore

e Results
» The role of different storage types
» Flexibility provision of industry and buildings
» The role of district cooling: optimal capacities

» Air pollution and renewable energy sources

e Conclusions
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Climate change vs. Air pollution
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Integrated energy system modelling
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MIXED INTEGER LINEAR OPTIMIZATION MODEL
Endogenous decisions:

v'DSM activation in industry and buildings!!

v'Share of district and individual cooling!!

v'Share of electrified and ICE transportation
vEnergy efficiency scenario 11
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Sector
interactions

[ Cooling

Water }

[ Transport SEE
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Limitations

e Spatial representation: transmission and distribution

(congestion)

e Temporal resolution: frequency, voltage

e Industry representation

e Socio-economic costs only
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ingapore

Si

Case study

e Population, area, GDP, industry
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Primary energy supply of Singapore

Bio and
-

waste 1%

3%

Natural gas
36% Oil
60%

Source: IEA (2015)
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Scenario development

Technologies/ Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
constraints BAU DC DC-PV  DC-PV-el.transp. CO,-constr.

Transport Y v v v v

Electrification : ' ;

Photovoltaics o v 1 v v v

District Cooling v v v v

SOFC, SOEC, v

synthetic fuels

CO,. emissions v
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Demand response - industry and buildings

e Load shifting increased peak demand (!) - but optimal

10
8
6
E 4
2
0 \4
9 0 12 0 12 0 12
(hour)

M Flexible demand utilized households ™ Flexible demand utilized Industry
M Flexible demand charge households M Flexible demand charge Industry
m waste CHP M gas CHP

M PVs

e | oad shifting in industry: 9%, 6% and 11% (Scenarios 5-7)
e Load shifting in buildings: 5%, 3% and 6%

e Total: 0.26-0.71% of final electricity demand
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Storage capaC|t|es

u Waste CHP l Gas CHP l Biomass CHP u PVs

Electricity generation by type of
the producer (%)

: : : non
DC-PV- i DSM-i  CO, :

(GWh) BAU bC DC-PV eI.transp.i EnEffE cons. : self-

: suff.
PTES 0 i 153 i 297 163 { 151 : 96 492
Grid batteries 50 { 0 i 0 0 0 : 0 20.6
Hydrogen o i 0 i 0 0 0 : 0 223
Methane 72 i 0 i 248 21.8 i 20.9: 0 0
EV batteries 1.0 1.5 4.9 15.1 15.0:  14.9 23.3
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Electricity generation by type of the

Case of Singapore: SOEC and SOFC Y g

e Only Scenario 7 (80% share of PV in ele. generation) X

e SOEC: 1,826 MW; SOFC: 434 MW (4% of final ele. demand)
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Scenario 7 (non self- —SOEC —SOFC

sufficient)
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V2G vs. smart charging

e Singapore 2030, Scenario 7: 80% PV penetration

e V2G: 16% of the total vehicle discharge
o V2G: 4% of the final electricity demand

e Curtailed energy: 4.2%

14

e Other scenarios: 25%-33% PV(curtailed ele.: 0%-0.3%)

e (V2G): 1.1% - 3.3% of the total vehicle discharge
e Other scenarios (V2G): 0.3% - 0.7% of the total vehicle

discharge

e

Source:wiseguyreports.com

iE

6onclusions:

e PV vs. wind

« High penetration vs low penetration

K Smart charging is enough

/
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District cooling vs individual coollng VS 01U
variable renewable energy =
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Biomass and air pollution - the case of A’q DTU
Singapore e .

Socio- Scenario |[Scenario |Scenario |Scenario |>cenario |Scenaric | Scenario
economic 1 2 3 4 5 7

&/
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air :
pollution 674 669 31 % 27
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COZe \“ :.'
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Conclusions

1) The role of different storage types

2) Flexibility provision of industry and buildings

3) The role of district cooling: optimal capacities

4) Air pollution and renewable energy sources
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Thank you!
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