

Energy Planning for Integrated Energy Systems

Dominik Franjo Dominković

DTU Compute Department of Applied Mathematics and Computer Science

Outline

- Integrated energy planning
- MILP model used
 - » Limitations of the model
- Case study: Singapore
- Results

- » The role of different storage types
- » Flexibility provision of industry and buildings
- » The role of district cooling: optimal capacities
- » Air pollution and renewable energy sources
- Conclusions

Climate change vs. Air pollution

Modelling Energy Supply of Future Smart Cities

Integrated energy system modelling

Limitations

 Spatial representation: transmission and distribution (congestion)

• Temporal resolution: frequency, voltage

• Industry representation

• Socio-economic costs only

Case study: Singapore

• Population, area, GDP, industry

Primary energy supply of Singapore

Scenario development

Technologies/ constraints	Scenario 1 BAU	Scenario 2 DC	Scenario 3 DC-PV	Scenario 4 DC-PV-el.transp.	Scenario 5 CO_2 -constr.
Transport Electrification	✓ <u> </u>	✓ ▮	✓ !	\checkmark	\checkmark
Photovoltaics	✓	✓ 🚦	\checkmark	\checkmark	\checkmark
District Cooling		\checkmark	\checkmark	\checkmark	\checkmark
SOFC, SOEC, synthetic fuels				\checkmark	
CO _{2e} emissions					\checkmark

AC/DC convert

H₂Tank

lectrolyzer

Demand response – industry and buildings

• Load shifting increased peak demand (!) – but optimal

- Load shifting in industry: 9%, 6% and 11% (Scenarios 5-7)
- Load shifting in buildings: 5%, 3% and 6%
- Total: 0.26-0.71% of final electricity demand

11 **DTU Compute, Technical University of Denmark** Energy Planning for Integrated Energy Systems

Case of Singapore: SOEC and SOFC

- Only Scenario 7 (80% share of PV in ele. generation)
- SOEC: 1,826 MW; SOFC: 434 MW (4% of final ele. demand)

V2G vs. smart charging

- Singapore 2030, Scenario 7: 80% PV penetration
- V2G: 16% of the total vehicle discharge
- V2G: 4% of the final electricity demand
- Curtailed energy: 4.2%
 - Other scenarios: 25%-33% PV(curtailed ele.: 0%-0.3%)
 - (V2G): 1.1% 3.3% of the total vehicle discharge
 - Other scenarios (V2G): 0.3% 0.7% of the total vehicle discharge

Conclusions:

- PV vs. wind
- High penetration vs low penetration
- Smart charging is enough

Energy Planning for Integrated Energy Systems

Model Biomass and air pollution – the case of Singapore

CO2e (kt)

NOx (t)

Conclusions

- 1) The role of different storage types
- 2) Flexibility provision of industry and buildings
- 3) The role of district cooling: optimal capacities
- 4) Air pollution and renewable energy sources

Thank you!

18 **DTU Compute, Technical University of Denmark** Energy Planning for Integrated Energy Systems