Robust Optimization for Unit Commitment and Dispatch in Energy Markets

Marco Zugno*, Juan Miguel Morales, Henrik Madsen (DTU Compute) and Antonio Conejo (Ohio State University)

* email: mazu@dtu.dk

Modeling and Optimization of Heat and Power System — DTU, 12th January 2015

Outline

1 Mathematical Framework

② Energy & Reserve Dispatch

3 CHP Unit Commitment & Scheduling

4 Conclusion

DTU Compute Department of Applied Mathematics and Computer Science

Energy & Reserve Dispatch

CHP Unit Commitment & Scheduling

Conclusion

Why Optimization Under Uncertainty

Decision-making in energy markets Sources of uncertainty in energy systems

Better decisions if optimization accounts for uncertainty

Deterministic Optimization Framework

Unit commitment and dispatch formalized as optimization problems

$$\begin{split} & \underset{\textbf{x},\textbf{y}}{\min}. \ \textbf{c}^{\top}\textbf{x} + \textbf{q}^{\top}\textbf{y} \\ & \text{s.t.} \ \textbf{A}\textbf{x} \geq \textbf{b} \ , \\ & \textbf{T}\textbf{x} + \textbf{W}\textbf{y} \geq \textbf{h} \end{split}$$

- **x**, **y** represent decision variables: unit status, dispatch, storage level, network state, etc.
- inequality and equality constraints impose limits on dispatch: dispatch limits, ramping, supply/demand balance, etc.

Optimization Under Uncertainty

Most often not all parameters are known in advance

$$\begin{split} & \underset{\mathbf{x}, \mathbf{y}_{\boldsymbol{\omega}}}{\text{Min.}} \mathbf{c}^{\top} \mathbf{x} + \mathcal{M}_{\boldsymbol{\omega}} \left\{ \mathbf{q}_{\boldsymbol{\omega}}^{\top} \mathbf{y}_{\boldsymbol{\omega}} \right\} \\ & \text{s.t.} \ \mathbf{A} \mathbf{x} \geq \mathbf{b} \ , \\ & \mathbf{T} \mathbf{x} + \mathbf{W} \mathbf{y}_{\boldsymbol{\omega}} \geq \mathbf{h}_{\boldsymbol{\omega}} \ , \qquad \forall \boldsymbol{\omega} \in \Omega \end{split}$$

- Uncertain parameters depend on random variable ω
- Variables y_{ω} are adjustable (recourse)
- · Measure of recourse cost in the objective function (expectation, etc.)
- · Constraints hold for different realizations of the uncertainty

Stochastic Programming

Tractable version of stochastic problem by sampling the uncertainty

$$\begin{split} & \underset{\mathbf{x}, \mathbf{y}_{\boldsymbol{\omega}_{s}}}{\text{Min.}} \mathbf{c}^{\top} \mathbf{x} + \sum_{s=1}^{S} p_{\boldsymbol{\omega}_{s}} \mathbf{q}_{\boldsymbol{\omega}_{s}}^{\top} \mathbf{y}_{\boldsymbol{\omega}_{s}} \\ & \text{s.t.} \ \mathbf{A} \mathbf{x} \geq \mathbf{b} \ , \\ & \mathbf{T} \mathbf{x} + \mathbf{W} \mathbf{y}_{\boldsymbol{\omega}_{s}} \geq \mathbf{h}_{\boldsymbol{\omega}_{s}} \ , \qquad s = 1, \dots, S \end{split}$$

- · Probably the most popular method of optimization under uncertainty
- Only used as a comparison in this presentation

DTU Compute Department of Applied Mathematics and Computer Science

Adaptive Robust Optimization (ARO)

Tractable version of stochastic problem based on notion of uncertainty set

$$\begin{split} \underset{\mathbf{x}}{\operatorname{Min.}} \mathbf{c}^{\top}\mathbf{x} + \max_{\mathbf{q},\mathbf{h}} \min_{\mathbf{y}} \mathbf{q}^{\top}\mathbf{y} \\ \mathbf{T}\mathbf{x} + \mathbf{W}\mathbf{y} \geq \mathbf{h} \ , \\ (\mathbf{q},\mathbf{h}) \in \mathcal{U} \ , \\ \mathrm{s.t.} \ \mathbf{A}\mathbf{x} \geq \mathbf{b} \ , \end{split}$$

- + $\mathcal{M}(\cdot)$ replaced by worst-case realization of recourse cost
- · Inner minimization problem guarantees feasibility of solution
- Three-level game against nature

Mathematical Framework

Energy & Reserve Dispatch

CHP Unit Commitment & Scheduling

Conclusion

ARO and Non-Anticipativity

- Worst-case trajectory of uncertainty revealed before making recourse decisions
- · Recourse has perfect knowledge of future worst-case uncertainty

DTU Compute Department of Applied Mathematics and Computer Science

Affinely Adjustable Robust Optimization (AARO)

Enforcing Linear Decision Rules

Optimal recourse functions $y(\omega)$ approximated by linear rules:

$$\mathsf{y}=\mathsf{Y}\omega$$

Computational Simplification

Linear coefficient Y is a first-stage variable: essentially a max-min problem

DTU Compute Department of Applied Mathematics and Computer Science

Affinely Adjustable Robust Optimization (AARO)

Problem Formulation

Differences from ARO:

- Not bound to optimize worst-case cost: can be made less conservative
- min-max problem can be simplified via duality argument: single stage problem

Energy and Reserve Dispatch using Adaptive Robust Optimization

DTU DTU Compute Department of Applied Mathematics and Computer Science

Electricity Market Setup

- Day-ahead market: 12- to 36-hour ahead
- Energy and reserve are co-optimized (first stage)
- · Followed by a balancing (real-time) market (second stage)
- Network is represented—as in US markets
- The right of starting-up and shutting-down own units is not confiscated—as in EU markets

DTU DTU Compute Department of Applied Mathematics and Computer Science

Adaptive Robust Optimization Approach

Two-stage robust optimization turn into three-level optimization problems

- **1** Make dispatch decision **x** with prognosis of the future (minimize cost)
- **2** Uncertainty (wind power production Δw) unfolds (maximize cost)
- **3** Make operation (recourse) decision **y** (minimize cost)

Conclusion

The Robust Optimization Approach

$$\begin{array}{ll} \min_{\mathbf{x}} \ \mathbf{c_x}^T \mathbf{x} \ +\max_{\Delta \mathbf{w}} \ \min_{\mathbf{y}} \ \mathbf{c_y}^T \mathbf{y} \\ & \text{s.t.} \ \mathbf{Py} = -\Delta \mathbf{w} - \mathbf{Qx} \ , \qquad \qquad : \boldsymbol{\lambda} \ , \\ & \mathbf{Ly} \geq \mathbf{I} - \mathbf{Mx} - \mathbf{N}\Delta w \ , \qquad \qquad : \boldsymbol{\mu} \ , \\ & \text{s.t.} \ \mathbf{H}\Delta w \leq \mathbf{h} \ , \\ & \text{s.t.} \ \mathbf{Fx} = \mathbf{d} - \widehat{\mathbf{w}} \ , \\ & \mathbf{Gx} \geq \mathbf{g} \ . \end{array}$$

This is a complicated problem!

There is no general solution technique for three-level optimization problems

Modeling the Uncertainty Set

Uncertain stochastic power production at different nodes described by polyhedral uncertainty set $\ensuremath{\mathcal{W}}$

- can be modeled via linear inequalities $\label{eq:ham} \textbf{H} \Delta \textbf{w} \leq \textbf{h}$
- can include "budget constraints" on the stochastic production
- can limit the variation of stochastic production among adjacent plants

Column & Constraint Generation Approach

In the linear case, for any feasible \boldsymbol{x}

- the worst-case realization of ${\bf w}$ is a vertex of the polytope ${\cal W}$
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

\Downarrow

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU Compute Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU DTU Compute

Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU Compute Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

1

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU DTU Compute

Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

1

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU DEpartment of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of ${\bf w}$ is a vertex of the polytope ${\cal W}$
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

1

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- 6 Generate cut
- DTU Compute Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

1

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU DTU Compute

Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

1

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- Generate cut
- DTU DTU Compute

Department of Applied Mathematics and Computer Science

Conclusion

Column & Constraint Generation Approach

In the linear case, for any feasible ${\bf x}$

- the worst-case realization of w is a vertex of the polytope W
- the worst-case recourse cost is the maximum of a finite number of affine functions of *x*

- Find optimal first-stage solution for approximation (lower bound)
- Calculate worst-case recourse cost (upper bound)
- 6 Generate cut
- DTU DTU Compute

Department of Applied Mathematics and Computer Science

Modified IEEE 24-Node Reliability Test System

- Block offers by generators
- Flexible generators provide reserve
- Three lines with reduced capacity
- Wind farms at 6 nodes of the system

Wind Power Data

- Data from 6 locations in Spain
- Uncertainty set parameters estimated from historical data
- Historical data also used as scenarios

Uncertainty Set for Wind Power Production

- Budget of uncertainty:
 - Intervals: $-\Delta W_n^{\max} \leq \Delta w_n \leq \Delta W_n^{\max}$, $\forall n \in \Phi^N$

• Budget:
$$\sum_{n \in \Phi^N} \frac{|\Delta w_n|}{\Delta W_n^{\max}} \leq \Gamma$$

One additional type of constraint to model geographical correlation

$$-\rho_{n_1n_2} \leq \frac{\Delta w_{n_1}}{\Delta w_{n_1}^{\max}} - \frac{\Delta w_{n_2}}{\Delta w_{n_2}^{\max}} \leq \rho_{n_1n_2}, \qquad \forall n_1, n_2 \in \Phi^N, n_1 \neq n_2$$

DTU Compute Department of Applied Mathematics and Computer Science

Robust Optimization vs Stochastic Programming

Risk-Neutral Case

Cost	Robu	ıst Optimiza	ation	Stochastic Programming			
Energy disp.	19 015.55			17 525.95			
Up reserve		1529.04			1395.77		
Down reserve		0		526.68			
Total day-ahead	20 544.59			19 448.40			
	Mean	CVaR _{95%}	$VaR_{100\%}$	Mean	$\text{CVaR}_{95\%}$	$VaR_{100\%}$	
Energy redisp.	2671.12	7223.69	7943.22	2176.31	9236.00	10 045.83	
Load-shedding	19.49	374.75	9743.38	39.06	751.15	19 529.87	
Total balancing	2690.60	7598.44	17 686.60	2215.37	9987.15	29 575.70	
Total aggregate	23 235.19	28143.03	38 231.19	21663.77	29 435.55	49 024.10	

DTU DTU Compute

Department of Applied Mathematics and Computer Science

Robust Optimization vs Stochastic Programming

Risk-Averse Case

DTU Compute Department of Applied Mathematics and Computer Science

Robust Optimization vs Stochastic Programming Computational Properties

Computational results with different IEEE power system models

Unit Commitment and Scheduling for Heat & Power Systems using Affinely Adjustable Robust Optimization

DTU DTU Compute Department of Applied Mathematics and Computer Science

Heat and Power System Example

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following day (periods $1, ..., N_T$)

- **Oper. h 1** Uncertainty at time 1 unfolds and units are re-dispatched (based on realizations until time 1)
- **Oper. h 2** Uncertainty at time 2 unfolds and units are re-dispatched (based on realizations until time 2)

Oper. h N_T Uncertainty at time N_T unfolds and units are re-dispatched (based on all realizations)

DTU Compute Department of Applied Mathematics and Computer Science

The problem is uncertain (heat demand, prices) and multi-stage:

- **Day-ahead** Determine unit commitment and schedule for the following day (periods $1, ..., N_T$)
 - **Oper. h 1** Uncertainty at time 1 unfolds and units are re-dispatched (based on realizations until time 1)
 - **Oper. h 2** Uncertainty at time 2 unfolds and units are re-dispatched (based on realizations until time 2)

Oper. h N_T Uncertainty at time N_T unfolds and units are re-dispatched (based on all realizations)

DTU Compute Department of Applied Mathematics and Computer Science

The problem is uncertain (heat demand, prices) and multi-stage:

- **Day-ahead** Determine unit commitment and schedule for the following day (periods $1, ..., N_T$)
 - **Oper.** h 1 Uncertainty at time 1 unfolds and units are re-dispatched (based on realizations until time 1)
 - **Oper. h 2** Uncertainty at time 2 unfolds and units are re-dispatched (based on realizations until time 2)

Oper. h N_T Uncertainty at time N_T unfolds and units are re-dispatched (based on all realizations)

DTU Compute Department of Applied Mathematics and Computer Science

The problem is uncertain (heat demand, prices) and multi-stage:

- **Day-ahead** Determine unit commitment and schedule for the following day (periods $1, ..., N_T$)
 - **Oper.** h 1 Uncertainty at time 1 unfolds and units are re-dispatched (based on realizations until time 1)
 - **Oper. h 2** Uncertainty at time 2 unfolds and units are re-dispatched (based on realizations until time 2)

Oper. h N_T Uncertainty at time N_T unfolds and units are re-dispatched (based on all realizations)

Conclusion

Robust Optimization Approach

Our approach based on Robust Optimization (RO)

$$\begin{array}{ll} \text{Minimize } \mathbf{c}^{\top}\mathbf{x} + \mathbb{E}_{\omega} \left\{ \mathbf{q}_{\omega}^{\top}\mathbf{y}(\omega) \right\} & (1) \\ \text{s.t. } \mathbf{A}\mathbf{x} \geq \mathbf{b} \ , & (2) \\ \mathbf{T}\mathbf{x} + \mathsf{W}\mathbf{y}(\omega) \geq \mathbf{h}_{\omega} \ , & \forall \omega \in \mathcal{U} & (3) \end{array}$$

where

- x are first-stage decision (unit commitment, schedule)
- + $\mathbf{y}(\cdot)$ are **recourse functions** of the uncertainty $\boldsymbol{\omega}$ (unit operation)
- The solution is optimal in expectation (1)
- The solution is feasible for any ω in an **uncertainty set** \mathcal{U} (3)

Linear Decision Rules

Optimal recourse decision approximated via linear decision rules

- Recourse decision depends on history of uncertainty—up to now (t)
- Independence on future uncertainty realizations (\(\tau > t\): non-anticipative

DTU Compute Department of Applied Mathematics and Computer Science

Final Linear Reformulation

We make the following assumptions:

- linear dependence of parameters to uncertainty: $\mathbf{q}_{\omega}=\mathbf{Q}\omega$, $\mathbf{h}_{\omega}=\mathbf{H}\omega$
- budget uncertainty set defined by $\mathsf{D} \omega \geq \mathsf{d}$

By duality arguments, the problem can be reformulated linearly:

$$\begin{split} & \underset{\mathbf{x},\mathbf{Y},\mathbf{\Lambda}}{\operatorname{\mathsf{Min}}} \mathbf{c}^{\top}\mathbf{x} + \operatorname{tr} \left\{ \mathbf{Q}^{\top}\mathbf{Y} \left(\mathbf{\Sigma}_{\boldsymbol{\omega}} + \mathbb{E}\{\boldsymbol{\omega}\}\mathbb{E}\{\boldsymbol{\omega}\}^{\top} \right) \right\} \\ & \text{s.t. } \mathbf{A}\mathbf{x} \geq \mathbf{b} \;, \\ & \mathbf{\Lambda}^{\top}\mathbf{d} \geq -\mathbf{T}\mathbf{x} \;, \\ & \mathbf{D}^{\top}\mathbf{\Lambda} = \left(\mathbf{W}\mathbf{Y} - \mathbf{H}\right)^{\top} \;, \\ & \mathbf{\Lambda} \in \mathbb{R}_{>0}^{R \times L_2} \end{split}$$

DTU Compute Department of Applied Mathematics and Computer Science

Case-Study Setup

Three production facilities with storage

- Extraction CHP (AMV3, AVV1)
- Back-pressure CHP (AMV1)
- heat-only plant
- Historical heat load from VEKS
 - RO: budget uncertainty set (tunable interval size and budget)
 - SP: Gaussian scenarios
- Power prices from NordPool
 - SP: Gaussian scenarios correlated with heat demand

Figure from HOFOR.dk

Back-pressure vs Extraction CHP Units

Back-pressure CHP unit

• constant heat/power ratio (r_b)

Extraction CHP unit

- more flexible operation in heat/power space
- feasible region approximated by polyhedron

Parameters of the System

		Extraction	Back-pressure	Heat-only
Power/heat ratio	r _b	0.64	0.28	0
Electricity loss for heat prod.	rv	-0.13	-	-
Fuel per electricity unit	$arphi^{p}$	2.40	2.40	-
Fuel per heat unit	φ^q	0.31	0.36	1.09
Minimum fuel input	f	120	72.24	0
Maximum fuel input	$\overline{\overline{f}}$	631.20	516	1086.96
Ramp-up/-down for fuel input	$\overline{r}/-\underline{r}$	150	50	1086.96
Minimum heat output	9	0	70	0
Maximum heat output	$\overline{\overline{q}}$	331	500	1000
Fuel marginal cost	с	24.16	12.75	93.96
No-load cost	c^0	0	0	2684.56
Start-up/shut-down cost	$c^{\rm SU}/c^{ m SD}$	7 382.55	6 040.27	0
Minimum up-time	T^{U}	2	5	0
Minimum down-time	\mathcal{T}^{D}	2	5	0
Provides real-time flexibility		yes	no	yes

DTU DTU Compute

Marco Zugno 12/01/2015 30/41

Department of Applied Mathematics and Computer Science

Scheduling Example

Results from the Deterministic Model

DTU DTU Compute

Department of Applied Mathematics and Computer Science

Scheduling Example

Results from the Robust Optimization Model

DTU Compute Ħ

DTU

Department of Applied Mathematics and Computer Science

Tuning the Need for Flexibility

The extraction unit is the main provider of flexibility

	Unit			Г		
	•	2	4	6	8	10
Total heat dispatch	MWh	265.20	444.27	622.24	811.31	1250.74
Periods online	h	4	5	6	8	24

Piecewise Linear Decision Rules

We can define different decision rules for partitions of the uncertainty set

- 2 different rules for each dimension of the uncertainty
- partitioning demand deviation about 0 straightforward choice

1

different response to deficit/surplus heat demand

Linear vs Piecewise Linear Decision Rules

Dispatch Improvement

Dispatch for extraction unit during peak-demand day

Decision rule	Unit	Г						
		2	4	6	8	10		
Linear	MWh	7944.00	7783.77	7572.89	7377.16	7200.06		
Piecewise-linear	MWh	7944.00	7944.00	7944.00	7944.00	7944.00		

Linear vs Piecewise Linear Decision Rules

In-Sample vs Out-of-Sample Results

Theoretical improvement

Empirical improvement

Interval size (# sd)

Interval size (# sd)

- · decision rules not binding in practice
- anticipative out-of-sample evaluation (stochastic programming)
- DTU DTU Compute
 - Department of Applied Mathematics and Computer Science

Price of Robustness

Sensitivity analysis can help tune the RO parameters (cost vs robustness)

DTU Compute Interval size (# sd)

Interval size (# sd) Marco Zugno 12/01/2015 37/41

Out-of-Sample Analysis

Model	Interval	г	Average profit (€)	Load not served (MWh)	
	radius (# sd)	-		largest	expected
	2.00	2	449 301.37	329.38	7.88
	2.00	4	446 337.45	198.93	3.38
	2.00	6	443 598.68	144.68	2.51
RO-PLDR	2.40	2	443 474.44	127.20	0.51
	2.40	4	440 776.45	39.64	0.29
	2.40	8, 10	438 086.22	31.58	0.20
	2.80	2	432 707.89	16.59	0.05
	3.20	2-10	419 281.79	0.00	0.00
DET	-	-	455 815.78	745.78	69.52
SP	-	-	448 945.73	159.90	2.13

- · Load-not-served not penalized in the objective function
- Out-of-sample analysis based on SP
- DTU Compute
- Department of Applied Mathematics and Computer Science

Conclusion

- Robust optimization addresses some of the shortcomings of stochastic programming
 - intractability (large scenario sets)
 - violation of non-anticipativity in multi-stage problems
- · Simpler models of the uncertainty are required
 - uncertainty sets
 - · low-order moments (mean, standard deviation, etc.)
- Trade-off between optimality and conservativeness can be tuned via uncertainty set parameters
 - similar results in terms of CVaR for risk-averse SP (ARO model for energy and reserve)
 - tunable conservativeness in AARO model for CHP units
- Promising results in terms of scalability

References

- M. Zugno, A.J. Conejo (2014). A Robust Optimization Approach to Energy and Reserve Dispatch in Electricity Markets, (under review).
- M. Zugno, J.M. Morales, H. Madsen (2014). *Commitment and Dispatch of Heat and Power Units via Affinely Adjustable Robust Optimization* (working paper, available soon).
- M. Zugno, J.M. Morales, H. Madsen (2014). Robust Management of Combined Heat and Power Systems via Linear Decision Rules, 2014 IEEE Energy Conference (ENERGYCON) Proceedings, 479–486.

DTU DTU Compute Department of Applied Mathematics and Computer Science

Thank you for your attention!

Q&A Session

DTU DTU Compute Department of Applied Mathematics and Computer Science

Inner Problem Reformulation via Duality

From *min-max-min* to *min-max-max*:

$$\begin{split} \min_{\mathbf{x}} \mathbf{c_x}^T \mathbf{x} + \max_{\Delta \mathbf{w}} \max_{\lambda,\mu} (-\Delta w - \mathbf{Q} \mathbf{x})^T \lambda + (\mathbf{I} - \mathbf{M} \mathbf{x} - \mathbf{N} \Delta w)^T \mu \\ & \text{s.t. } \mathbf{P}^T \lambda + \mathbf{L}^T \mu = \mathbf{c_y} , \\ \mu \ge 0 , \\ & \text{s.t. } \mathbf{H} \Delta w \le \mathbf{h} , \\ \text{s.t. } \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \ge \mathbf{g} . \end{split}$$

Inner *max-max* problem can be merged into a single **bilinear** maximization problem

$$\begin{split} \min_{\mathbf{x},\beta} & \mathbf{c_x}^T \mathbf{x} + \beta \\ \text{s.t.} & \beta \geq -\Delta \mathbf{w}_k^T \boldsymbol{\lambda}_k + \left(\mathbf{I} - \mathbf{N} \Delta \mathbf{w}_k \right)^T \boldsymbol{\mu}_k - \left(\boldsymbol{\lambda}_k \mathbf{Q} + \boldsymbol{\mu}_k \mathbf{M} \right) \mathbf{x} , \quad \forall k , \\ & \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} . \end{split}$$

 $lacksymbol{0}$ Start with a lower bound eta for the recourse cost

2 Find optimal first-stage solution x for the approximation (lower bound)

3 Calculate worst-case recourse cost (upper bound)

④ Generate cut for the vertex, go back to 2

DTU Compute Department of Applied Mathematics and Computer Science

$$\begin{split} \min_{\mathbf{x},\beta} & \mathbf{c_x}^T \mathbf{x} + \beta \\ \text{s.t.} & \beta \geq -\Delta \mathbf{w}_k^T \boldsymbol{\lambda}_k + \left(\mathbf{I} - \mathbf{N} \Delta \mathbf{w}_k \right)^T \boldsymbol{\mu}_k - \left(\boldsymbol{\lambda}_k \mathbf{Q} + \boldsymbol{\mu}_k \mathbf{M} \right) \mathbf{x} , \quad \forall k , \\ & \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} . \end{split}$$

While (upper bound - lower bound > ϵ)

1 Start with a lower bound β for the recourse cost

2 Find optimal first-stage solution x for the approximation (lower bound)

3 Calculate worst-case recourse cost (upper bound)

④ Generate cut for the vertex, go back to 2

DTU Compute Department of Applied Mathematics and Computer Science

$$\begin{split} \min_{\mathbf{x},\beta} & \mathbf{c_x}^T \mathbf{x} + \beta \\ \text{s.t.} & \beta \geq -\Delta \mathbf{w}_k^T \boldsymbol{\lambda}_k + \left(\mathbf{I} - \mathbf{N} \Delta \mathbf{w}_k \right)^T \boldsymbol{\mu}_k - \left(\boldsymbol{\lambda}_k \mathbf{Q} + \boldsymbol{\mu}_k \mathbf{M} \right) \mathbf{x} , \quad \forall k , \\ & \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} . \end{split}$$

While (upper bound - lower bound > ϵ)

- **1** Start with a lower bound β for the recourse cost
- Pind optimal first-stage solution x for the approximation (lower bound)
- 3 Calculate worst-case recourse cost (upper bound)
- ④ Generate cut for the vertex, go back to 2

DTU Compute Department of Applied Mathematics and Computer Science

$$\begin{split} \min_{\mathbf{x},\beta} & \mathbf{c_x}^T \mathbf{x} + \beta \\ \text{s.t.} & \beta \geq -\Delta \mathbf{w}_k^T \boldsymbol{\lambda}_k + \left(\mathbf{I} - \mathbf{N} \Delta \mathbf{w}_k \right)^T \boldsymbol{\mu}_k - \left(\boldsymbol{\lambda}_k \mathbf{Q} + \boldsymbol{\mu}_k \mathbf{M} \right) \mathbf{x} , \quad \forall k , \\ & \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} . \end{split}$$

While (upper bound - lower bound > ϵ)

- **1** Start with a lower bound β for the recourse cost
- Pind optimal first-stage solution x for the approximation (lower bound)
- 3 Calculate worst-case recourse cost (upper bound)

Generate cut for the vertex, go back to 2

$$\begin{split} \min_{\mathbf{x},\beta} & \mathbf{c_x}^T \mathbf{x} + \beta \\ \text{s.t.} & \beta \geq -\Delta \mathbf{w}_k^T \boldsymbol{\lambda}_k + \left(\mathbf{I} - \mathbf{N} \Delta \mathbf{w}_k \right)^T \boldsymbol{\mu}_k - \left(\boldsymbol{\lambda}_k \mathbf{Q} + \boldsymbol{\mu}_k \mathbf{M} \right) \mathbf{x} , \quad \forall k , \\ & \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} . \end{split}$$

While (upper bound - lower bound > ϵ)

- **()** Start with a lower bound β for the recourse cost
- **2** Find optimal first-stage solution *x* for the approximation (lower bound)
- 3 Calculate worst-case recourse cost (upper bound)
- Generate cut for the vertex, go back to 2

DTU Compute Department of Applied Mathematics and Computer Science

Subproblem Choice vs Uncertainty Set

Point 3 in the cutting-plane method requires the solution of a bilinear program

- Simple, "easy-to-enumerate" uncertainty sets (budget)
- Heuristic methods (suboptimal)

We want to be able to solve the problem

- exactly
- for any polyhedral uncertainty set

So far only "easy-to-enumerate" polyhedral sets have been considered, or heuristic techniques

DTU DTU Compute

Department of Applied Mathematics and Computer Science

Reformulation of the Problem (1)

Swapping Inner Problems

The inner problems can be swapped:

$$\begin{split} \min_{\mathbf{x}} \mathbf{c_x}^T \mathbf{x} + \max_{\boldsymbol{\lambda}, \boldsymbol{\mu}} &- (\mathbf{Q} \mathbf{x})^T \boldsymbol{\lambda} + (\mathbf{I} - \mathbf{M} \mathbf{x})^T \boldsymbol{\mu} + \max_{\Delta \mathbf{w}} &- (\boldsymbol{\lambda}^T + \boldsymbol{\mu}^T \mathbf{N}) \, \Delta \mathbf{w} \\ & \text{s.t. } \mathbf{H} \Delta \mathbf{w} \leq \mathbf{h} \;, \quad : \boldsymbol{\xi} \;, \\ & \text{s.t. } \mathbf{H} \Delta \mathbf{w} \leq \mathbf{h} \;, \quad : \boldsymbol{\xi} \;, \\ & \boldsymbol{\mu} \geq 0 \;, \\ & \text{s.t. } \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} \;, \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} \;, \end{split}$$

DTU Department of Applied Mathematics and Computer Science

Reformulation of the Problem (2)

Using Strong Duality

The inner problem is linear \Rightarrow strong duality holds:

$$-\underbrace{\left(\boldsymbol{\lambda}^{\mathsf{T}}+\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\mathsf{N}}\right)\Delta\boldsymbol{\mathsf{w}}}_{\mathsf{T}}=\boldsymbol{\mathsf{h}}^{\mathsf{T}}\boldsymbol{\boldsymbol{\xi}}$$

objective function

We can exchange a bilinear term with a linear one, but the innermost problem becomes a minimization problem

 We can enforce KKT conditions to guarantee optimality and get rid of a level

DTU DTU Compute Department of Applied Mathematics and Computer Science

Reformulation of the Problem (3)

Final Formulation

$$\begin{split} \min_{\mathbf{x}} \mathbf{c_x}^T \mathbf{x} + \max_{\boldsymbol{\lambda}, \boldsymbol{\mu}, \Delta \mathsf{w}, \boldsymbol{\xi}} & - (\mathbf{Q} \mathbf{x})^T \boldsymbol{\lambda} + (\mathbf{I} - \mathbf{M} \mathbf{x})^T \boldsymbol{\mu} + \mathbf{h}^T \boldsymbol{\xi} \\ & \text{s.t. } \mathbf{0} \leq \boldsymbol{\xi} \perp \mathbf{h} - \mathbf{H} \Delta \mathsf{w} \geq \mathbf{0} \ , \\ & \mathbf{H}^T \boldsymbol{\xi} = -\boldsymbol{\lambda} - \mathbf{N}^T \boldsymbol{\mu} \ , \\ & \mathbf{P}^T \boldsymbol{\lambda} + \mathbf{L}^T \boldsymbol{\mu} = \mathbf{c_y} \ , \\ & \boldsymbol{\mu} \geq \mathbf{0} \ , \\ & \text{s.t. } \mathbf{F} \mathbf{x} = \mathbf{d} - \widehat{\mathbf{w}} \ , \\ & \mathbf{G} \mathbf{x} \geq \mathbf{g} \ . \end{split}$$

 \perp indicates that the product of the operands is 0 \Rightarrow this can be linearized using binary variables (MILP)

DTU DTU Compute

Department of Applied Mathematics and Computer Science

Out-of-Sample Analysis (Spring)

Model	Interval radius (# sd)		Average profit (€)	Heat load not served (MWh)	
1 lodel		•	,	largest	expected
	2.00	2	251 514.22	217.26	5.70
RO-PLDR	2.40	2	250 505.55	6.78	0.01
	4.00	2	248 484.94	0.00	0.00
DET	-	-	260 927.88	340.15	49.74
SP	_	-	257 295.35	76.17	1.54

DTU DTU Compute Department of Applied Mathematics and Computer Science

Out-of-Sample Analysis (Summer)

Model	Interval radius (# sd)	(#sd) Γ Average profit (€)		Heat load	d not served (MWh)
		•		largest	expected
RO-PLDR	2.00	2	88 423.27	0.00	0.00
DET	-	-	94 413.41	117.00	16.10
SP	-	-	92 356.87	0.00	0.00

Out-of-Sample Analysis (Autumn)

Model	Interval radius (# sd)		Average profit (€)	Heat load not served (MWh)	
Model		•		largest	expected
	2.00	2	249 631.81	90.35	0.41
RO-PLDR	2.40	2	248 673.51	0.00	0.00
DET	-	-	259 135.23	238.72	12.01
SP	-	-	255 836.17	99.71	0.54