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Mathematical Framework
0000000

Why Optimization Under Uncertainty

Sources of a
uncertainty in energy ‘

systems e
— —

Better decisions if

Decision-making in - optimization accounts
energy markets for uncertainty
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Mathematical Framework
00000000

Deterministic Optimization Framework

Unit commitment and dispatch formalized as optimization problems
Min. ¢"x + qu
X7y
s.t. Ax > b,
Tx+ Wy > h

* X,y represent decision variables: unit status, dispatch, storage level,
network state, etc.

* inequality and equality constraints impose limits on dispatch: dispatch
limits, ramping, supply/demand balance, etc.
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Mathematical Framework
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Optimization Under Uncertainty

Most often not all parameters are known in advance

Min. ¢’ x + M,, {quw}

X, Yw
s.t. Ax > b,
Tx 4+ Wy, > h,,, Vw € Q

* Uncertain parameters depend on random variable w

* Variables y,, are adjustable (recourse)

* Measure of recourse cost in the objective function (expectation, etc.)
+ Constraints hold for different realizations of the uncertainty
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Mathematical Framework
[e]e]e] lelele]e]

Stochastic Programming

Tractable version of stochastic problem by sampling the uncertainty

S
: T § T
Min. ¢ x + Pwsqwsyws
X, Yws 1
s=

s.t. Ax > b,
Tx+ Wy, >h,,, s=1...,5

* Probably the most popular method of optimization under uncertainty

* Only used as a comparison in this presentation
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Mathematical Framework
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Adaptive Robust Optimization (ARO)

Tractable version of stochastic problem based on notion of uncertainty set

Min. ¢ x4+ maxminq'y
X

qh Yy
Tx+Wy>h,
(q,h) e U,

s.t. Ax > b,

« M(-) replaced by worst-case realization of recourse cost
* Inner minimization problem guarantees feasibility of solution

* Three-level game against nature
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Mathematical Framework
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ARO and Non-Anticipativity

* Worst-case trajectory of uncertainty revealed before making recourse

decisions
* Recourse has perfect knowledge of future worst-case uncertainty
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Affinely Adjustable Robust Optimization (AARO)

Enforcing Linear Decision Rules

Optimal recourse functions y(w)
approximated by linear rules:

y=Yw

Computational Simplification
Linear coefficient Y is a first-stage variable: essentially a max-min problem
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Affinely Adjustable Robust Optimization (AARO)

Problem Formulation

Min. ¢ x + E, {wTQTYw} Min. ¢ x+E,, {wTQTYw}
X,Y X,
st.Ax > b, o st.Ax > b,
Tx +WYw > Hw, Vwel Tgé{Ter(WY—H)w}ZO

Differences from ARO:

*+ Not bound to optimize worst-case cost: can be made less
conservative

* min-max problem can be simplified via duality argument: single stage
problem
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Energy & Reserve Dispatch
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Energy and Reserve Dispatch
using Adaptive Robust Optimization
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Energy & Reserve Dispatch
0@0000000000

Electricity Market Setup

* Day-ahead market: 12- to 36-hour ahead
* Energy and reserve are co-optimized (first stage)
* Followed by a balancing (real-time) market (second stage)

* Network is represented—as in US markets

The right of starting-up and shutting-down own units is not
confiscated—as in EU markets
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Energy & Reserve Dispatch
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Adaptive Robust Optimization Approach

Two-stage robust optimization turn into three-level optimization problems
@ Make dispatch decision x with prognosis of the future (minimize cost)
® Uncertainty (wind power production Aw) unfolds (maximize cost)

© Make operation (recourse) decision y (minimize cost)
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The Robust Optimization Approach

min ¢x'x 4+max min cyTy
x Aw

y
s.t. Py = —-Aw —Qx, T,
Ly > 1 —Mx —NAw, AN
s.t. HAw <h,
st. Fx=d—w,
Gx>g.

This is a complicated problem!

There is no general solution technique for three-level optimization
problems

oru DTU Compute
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Energy & Reserve Dispatch
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Modeling the Uncertainty Set

Uncertain stochastic power production at different nodes described by
polyhedral uncertainty set W
W2
* can be modeled via linear inequalities
HAw <h

* can include “budget constraints” on
the stochastic production

* can limit the variation of stochastic
production among adjacent plants
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Column & Constraint Generation Approach

In the linear case, for any feasible x
* the worst-case realization of w is a
vertex of the polytope W
* the worst-case recourse cost is the

maximum of a finite number of affine
functions of x

4

@ Find optimal first-stage solution for
approximation (lower bound)

@® Calculate worst-case recourse cost
(upper bound)

© Generate cut
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Energy & Reserve Dispatch
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Column & Constraint Generation Approach
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Energy & Reserve Dispatch
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Modified IEEE 24-Node Reliability Test System

230KV

* Block offers by generators
* Flexible generators provide reserve

* Three lines with reduced capacity

* Wind farms at 6 nodes of the
system

138%v

01U ] DTU Compute Marco Zugno 12/01/2015
= Department of Applied Mathematics and Computer Science 17/41



Energy & Reserve Dispatch
00000000000

Wind Power Data

+ Data from 6 locations in Spain

* Uncertainty set parameters
estimated from historical data

* Historical data also used as
scenarios
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Energy & Reserve Dispatch
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Uncertainty Set for Wind Power Production

* Budget of uncertainty:

* Intervals: —AW"* < Aw, < AW Vne oV
|[Aw,|
° Budget: W S
nedN n

* One additional type of constraint to model geographical correlation

Awp, Awp,

N
_ A ymax = Prny Vm,nz co , M 7'5 ny
mn

- Pm m S
max
Awy
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Robust Optimization vs Stochastic Programming
Risk-Neutral Case

Cost Robust Optimization Stochastic Programming
Energy disp. 19 015.55 17525.95
Up reserve 1529.04 1395.77
Down reserve 0 526.68
Total day-ahead 20544.59 19448.40

Mean CVaR95% VaRmo% Mean CVaRgs% VaR100%
Energy redisp. 267112 7223.69 7943.22 2176.31 9236.00 10 045.83
Load-shedding 19.49 374.75 9743.38 39.06 75115 19529.87

Total balancing 2690.60 7598.44  17686.60 2215.37 9987.15  29575.70
Total aggregate 2323519 28143.03 3823119 21663.77 2943555 49024.10
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Robust Optimization vs Stochastic Programming

Risk-Averse Case

In-sample Out-of-sample
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Robust Optimization vs Stochastic Programming

Computational Properties

Computational results with different IEEE power system models
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CHP Unit Commitment & Scheduling
0000000000000 0000

Unit Commitment and Scheduling
for Heat & Power Systems
using Affinely Adjustable Robust Optimization
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CHP Unit Commitment & Scheduling
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Heat and Power System Example

Heat plant District heating

& i
S

CHP CHP

' )
> v
Heat
(extraction) (backpressure) tank
»
Electricity
market
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CHP Unit Commitment & Scheduling
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A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1,..., N7)
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A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1,..., N7)

Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)
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CHP Unit Commitment & Scheduling
0000000000000 0000

A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:
Day-ahead Determine unit commitment and schedule for the following
day (periods 1,..., N7)
Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)
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CHP Unit Commitment & Scheduling
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A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:
Day-ahead Determine unit commitment and schedule for the following
day (periods 1,..., N7)
Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)

Oper. h N7 Uncertainty at time N7 unfolds and units are re-dispatched
(based on all realizations)
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CHP Unit Commitment & Scheduling
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Robust Optimization Approach

Our approach based on Robust Optimization (RO)

L T T
MII‘;:;\RI)ZG c x+E, {qu(w)} V)
st. Ax>b, 2)
Tx + Wy(w) > hg, , Vw el 3)

where
* x are first-stage decision (unit commitment, schedule)
* y(-) are recourse functions of the uncertainty w (unit operation)
* The solution is optimal in expectation (1)

* The solution is feasible for any w in an uncertainty set I/ (3)
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CHP Unit Commitment & Scheduling
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Linear Decision Rules

Optimal recourse decision approximated via linear decision rules

yl\

t
Yie(w) =Yie + Z Yierwr , Vi, t

7=

* Recourse decision depends on history of uncertainty—up to now (t)

* Independence on future uncertainty realizations (7 > t):
non-anticipative

Marco Zugno 12/01/2015
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Final Linear Reformulation

We make the following assumptions:
* linear dependence of parameters to uncertainty: q,, = Qw, h, = Hw
* budget uncertainty set defined by Dw > d

By duality arguments, the problem can be reformulated linearly:

Min. ¢! x + tr {QTY (Zw + E{w}E{w}T> }

x,Y,
s.t. Ax > b,
ATd>—Tx,
D'A=(WY-H)",
R><L2
A e RS,
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CHP Unit Commitment & Scheduling
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Case-Study Setup

Three production facilities with storage
* Extraction CHP (AMV3, AVV1)
* Back-pressure CHP (AMV1)

* heat-only plant

Historical heat load from VEKS

+ RO: budget uncertainty set (tunable
interval size and budget)

* SP: Gaussian scenarios

Power prices from NordPool Figure from HOFOR dk

* SP: Gaussian scenarios correlated
with heat demand
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CHP Unit Commitment & Scheduling
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Back-pressure vs Extraction CHP Units

P
Back-pressure CHP unit ro
* constant heat/power ratio (rp)
H
P
v
Extraction CHP unit
* more flexible operation in heat/power space
v
* feasible region approximated by polyhedron
H
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CHP Unit Commitment & Scheduling
0000000 0@00000000

Parameters of the System

Extraction Back-pressure Heat-only
Power/heat ratio I 0.64 0.28 0
Electricity loss for heat prod. ry -0.13 - -
Fuel per electricity unit @ 2.40 2.40 -
Fuel per heat unit o? 0.31 0.36 1.09
Minimum fuel input f 120 72.24 0
Maximum fuel input f 631.20 516 1086.96
Ramp-up/-down for fuel input r/—r 150 50 1086.96
Minimum heat output q 0 70 0
Maximum heat output g 331 500 1000
Fuel marginal cost c 2416 12.75 93.96
No-load cost c 0 0 268456
Start-up/shut-down cost Y/ cSP 7382.55 6040.27 0
Minimum up-time TY 2 5 0
Minimum down-time TP 2 5 0
Provides real-time flexibility yes no yes
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Scheduling Example

Results from the Deterministic Model

=60 . . . ; ;
s
=
@ 40 i
© _/\N\
i)
i 20 1 1 1 1 1
4 8 12 16 20 24
Time period (h)
600 - T
| I Extraction I Backpressure I Storage I Demand
s
s 400 -
<2
3
°
2 200 H -
(5}
%)
0
4 8 12 16 20 24
Time period (h)
DU | DTU Compute Marco Zugno 12/01/2015

= Department of Applied Mathematics and Computer Science 31/41



000000000000 0000
Scheduling Example

Results from the Robust Optimization Model
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CHP Unit Commitment & Scheduling
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Tuning the Need for Flexibility

The extraction unit is the main provider of flexibility

Unit r
4 6 8 10
Total heat dispatch  MWh 26520 444.27 62224 811.31 1250.74
Periods online h 4 5 6 8 24

Marco Zugno 12/01/2015
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CHP Unit Commitment & Scheduling
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Piecewise Linear Decision Rules

We can define different decision rules for partitions of the uncertainty set

. . . /
« 2 different rules for each dimension of y L

the uncertainty

* partitioning demand deviation about 0
straightforward choice

different response to deficit/surplus >
heat demand @
DIU | DTU Compute Marco Zugno 12/01/2015
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Linear vs Piecewise Linear Decision Rules

Dispatch Improvement

Dispatch for extraction unit during peak-demand day

Decision rule Unit r
2 4 6 8 10
Linear MWh 7944.00 7783.77 7572.89 7377.16 7200.06

Piecewise-linear MWh 7944.00 7944.00 7944.00 7944.00 7944.00
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CHP Unit Commitment & Scheduling
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Linear vs Piecewise Linear Decision Rules

In-Sample vs Out-of-Sample Results

Theoretical improvement

40
X

4
36
2 , 242832

Interval size (# sd)

* decision rules not binding in practice

%

Empirical improvement

4
53238
) 2.4%

Interval size (# sd)

* anticipative out-of-sample evaluation (stochastic programming)
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CHP Unit Commitment & Scheduling
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Price of Robustness

Sensitivity analysis can help tune the RO parameters (cost vs robustness)

Average profit Worst-case load-not-served
x10° 400
ey
=
2
@4.5 200
k!
r 24 2
2.8
T 0 4 36 3.2 28 2_42 3.6 3.2
Interval size (# sd) Interval size (# sd)
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RO vs Alternative Methods
Out-of-Sample Analysis

Model Interval [ Average profit (€) Load not served (MWh)
radius (# sd) largest expected

2.00 2 44930137 329.38 7.88

2.00 4 446337.45  198.93 3.38

2.00 6 443598.68  144.68 2.51

RO-PLDR 2.40 2 443 474.44 127.20 0.51
2.40 4 440776.45 39.64 0.29

240 8,10 438 086.22 31.58 0.20

2.80 2 432707.89 16.59 0.05

3.20 2-10 419 281.79 0.00 0.00

DET - - 45581578  745.78 69.52
SP - - 44894573  159.90 213

* Load-not-served not penalized in the objective function
¢ Out-of-sample analysis based on SP
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Conclusion
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Conclusion

* Robust optimization addresses some of the shortcomings of
stochastic programming

* intractability (large scenario sets)
* violation of non-anticipativity in multi-stage problems

* Simpler models of the uncertainty are required
* uncertainty sets
* low-order moments (mean, standard deviation, etc.)

* Trade-off between optimality and conservativeness can be tuned via
uncertainty set parameters
* similar results in terms of CVaR for risk-averse SP (ARO model for
energy and reserve)
* tunable conservativeness in AARO model for CHP units

* Promising results in terms of scalability
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Conclusion
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Thank you for your attention!

Q&A Session
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Inner Problem Reformulation via Duality

From min-max-min to min-max-max:

min ¢, x+max max (—Aw —Qx)" A+ (I — Mx — NAw)
X

Aw Ap
s.t. PT)\—f—LTu:cy,
n=>0,
st. HAw < h |
st.Fx=d—-w,
Gx>g.

Inner max-max problem can be merged into a single bilinear maximization

problem
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Solution via Cutting-Plane Method

min ¢y x + f8

X?ﬁ
st. B> —Aw A+ (1= NAW) 1 — (AQ + e M)x,  Vk,
Fx =d—w,
Gx >g.
DTU Compute Marco Zugno 12/01/2015
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Solution via Cutting-Plane Method

min ¢y x + f8

x5
st. B> —Aw A+ (1= NAW) 1 — (AQ + e M)x,  Vk,
Fx =d—w,
Gx >g.

While (upper bound - lower bound > ¢)
@ Start with a lower bound 3 for the recourse cost
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Solution via Cutting-Plane Method
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@ Start with a lower bound 3 for the recourse cost
@® Find optimal first-stage solution x for the approximation (lower bound)
© Calculate worst-case recourse cost (upper bound)

O Generate cut for the vertex, go back to 2
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Subproblem Choice vs Uncertainty Set

Point 3 in the cutting-plane method requires the solution of a bilinear
program

* Simple, “easy-to-enumerate” uncertainty sets (budget)

* Heuristic methods (suboptimal)

W2

We want to be able to solve the problem
* exactly

* for any polyhedral uncertainty set

So far only “easy-to-enumerate” polyhedral sets have been considered, or
heuristic techniques
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Reformulation of the Problem (1)

Swapping Inner Problems

The inner problems can be swapped:

min cXTx—i-r;\ax —(Q) A+ (1 - Mx)Tu—FnAax — (AT +u'N) Aw
X Ny w

st. HAw<h, :¢,
s.t. PT}\+LT;L:cy,
n=>0,
st.Fx=d—w,
Gx>g,
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Reformulation of the Problem (2)
Using Strong Duality

The inner problem is linear = strong duality holds:

— (AT +u'N)Aw=hT¢

objective function

We can exchange a bilinear term with a linear one, but the innermost
problem becomes a minimization problem
* We can enforce KKT conditions to guarantee optimality and get rid of

a level
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Reformulation of the Problem (3)

Final Formulation

min ¢, x+ max — Q)" A+ (1 —=Mx) pn+hT¢
X 7”7 w7

st.0<¢éLh—HAw>0,
H'¢=-X—N'p,
PA+LTp=c,
n>0,
st.Fx=d—w,
Gx >g.

1 indicates that the product of the operands is O = this can be linearized
using binary variables (MILP)
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RO vs Alternative Methods
Out-of-Sample Analysis (Spring)

Heat load not served (MWh)

Model Interval radius (# sd) I Average profit (€)
largest expected
200 2 25151422  217.26 5.70
RO-PLDR 240 2 250505.55 6.78 0.01
400 2 248484.94 0.00 0.00
DET - - 260927.88 340.15 49.74
SP - - 257295.35 76.17 1.54
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RO vs Alternative Methods

Out-of-Sample Analysis (Summer)

Heat load not served (MWh)

Model Interval radius (# sd) T Average profit (€)
largest expected
RO-PLDR 200 2 88423.27 0.00 0.00
DET - - 94413.41  117.00 16.10
SP - - 92356.87 0.00 0.00
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RO vs Alternative Methods

Out-of-Sample Analysis (Autumn)

Heat load not served (MWh)

Model Interval radius (#sd) I Average profit (€)
largest expected
200 2 249 631.81 90.35 0.41
RO-PLDR 240 2 248 673.51 0.00 0.00
DET - - 259135.23  238.72 12.01
SP - - 255836.17 99.7 0.54
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