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Why Optimization Under Uncertainty

Decision-making in
energy markets

→

Sources of
uncertainty in energy

systems
→

Better decisions if
optimization accounts

for uncertainty
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Deterministic Optimization Framework

Unit commitment and dispatch formalized as optimization problems

Min.
x,y

c>x + q>y

s.t. Ax ≥ b ,
Tx + Wy ≥ h

• x, y represent decision variables: unit status, dispatch, storage level,
network state, etc.

• inequality and equality constraints impose limits on dispatch: dispatch
limits, ramping, supply/demand balance, etc.
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Optimization Under Uncertainty

Most often not all parameters are known in advance

Min.
x,yω

c>x +Mω

{
q>ωyω

}

s.t. Ax ≥ b ,
Tx + Wyω ≥ hω , ∀ω ∈ Ω

• Uncertain parameters depend on random variable ω
• Variables yω are adjustable (recourse)
• Measure of recourse cost in the objective function (expectation, etc.)
• Constraints hold for di�erent realizations of the uncertainty
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Stochastic Programming

Tractable version of stochastic problem by sampling the uncertainty

Min.
x,yωs

c>x +
S∑

s=1

pωsq
>
ωsyωs

s.t. Ax ≥ b ,
Tx + Wyωs

≥ hωs , s = 1, . . . , S

• Probably the most popular method of optimization under uncertainty
• Only used as a comparison in this presentation
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Adaptive Robust Optimization (ARO)

Tractable version of stochastic problem based on notion of uncertainty set

Min.
x

c>x+max
q,h

min
y

q>y

Tx + Wy ≥ h ,
(q,h) ∈ U ,

s.t. Ax ≥ b ,

• M(·) replaced by worst-case realization of recourse cost
• Inner minimization problem guarantees feasibility of solution
• Three-level game against nature
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ARO and Non-Anticipativity

t1 t2 t3 t4

b

b

b

b

• Worst-case trajectory of uncertainty revealed before making recourse
decisions

• Recourse has perfect knowledge of future worst-case uncertainty
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A�nely Adjustable Robust Optimization (AARO)
Enforcing Linear Decision Rules

Optimal recourse functions y(ω)
approximated by linear rules:

y = Yω

ω

y 

Computational Simpli�cation
Linear coe�cient Y is a �rst-stage variable: essentially a max-min problem
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A�nely Adjustable Robust Optimization (AARO)
Problem Formulation

Min.
x,Y

c>x + Eω
{
ω>Q>Yω

}

s.t. Ax ≥ b ,
Tx + WYω ≥ Hω , ∀ω ∈ U

⇔

Min.
x,Y

c>x + Eω
{
ω>Q>Yω

}

s.t. Ax ≥ b ,
max
ω∈Ω
{Tx + (WY− H)ω} ≥ 0

Di�erences from ARO:
• Not bound to optimize worst-case cost: can be made less
conservative

• min-max problem can be simpli�ed via duality argument: single stage
problem
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Energy and Reserve Dispatch
using Adaptive Robust Optimization
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Electricity Market Setup

• Day-ahead market: 12- to 36-hour ahead

• Energy and reserve are co-optimized (�rst stage)

• Followed by a balancing (real-time) market (second stage)

• Network is represented—as in US markets

• The right of starting-up and shutting-down own units is not
con�scated—as in EU markets
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Adaptive Robust Optimization Approach

Two-stage robust optimization turn into three-level optimization problems

1 Make dispatch decision x with prognosis of the future (minimize cost)

2 Uncertainty (wind power production ∆w) unfolds (maximize cost)

3 Make operation (recourse) decision y (minimize cost)
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The Robust Optimization Approach

min
x

cxTx +max
∆w

min
y

cyTy

s.t. Py = −∆w− Qx , : λ ,

Ly ≥ l−Mx− N∆w , : µ ,

s.t. H∆w ≤ h ,
s.t. Fx = d− ŵ ,

Gx ≥ g .

This is a complicated problem!
There is no general solution technique for three-level optimization
problems
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Modeling the Uncertainty Set

Uncertain stochastic power production at di�erent nodes described by
polyhedral uncertainty set W

• can be modeled via linear inequalities
H∆w ≤ h

• can include “budget constraints” on
the stochastic production

• can limit the variation of stochastic
production among adjacent plants w1

w2

b

b
b

b
b

•ŵ

W

b

b
b

b
b
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Column & Constraint Generation Approach
In the linear case, for any feasible x

• the worst-case realization of w is a
vertex of the polytope W

• the worst-case recourse cost is the
maximum of a �nite number of a�ne
functions of x

⇓

1 Find optimal �rst-stage solution for
approximation (lower bound)

2 Calculate worst-case recourse cost
(upper bound)

3 Generate cut
Marco Zugno 12/01/2015
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Modi�ed IEEE 24-Node Reliability Test System

• Block o�ers by generators

• Flexible generators provide reserve

• Three lines with reduced capacity

• Wind farms at 6 nodes of the
system
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Wind Power Data

• Data from 6 locations in Spain

• Uncertainty set parameters
estimated from historical data

• Historical data also used as
scenarios
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Uncertainty Set for Wind Power Production

• Budget of uncertainty:

• Intervals: −∆Wmax

n ≤ ∆wn ≤ ∆Wmax

n , ∀n ∈ ΦN

• Budget:
∑

n∈ΦN

|∆wn|
∆Wmax

n
≤ Γ

• One additional type of constraint to model geographical correlation

−ρn1n2 ≤
∆wn1

∆wmaxn1
− ∆wn2

∆wmaxn2
≤ ρn1n2 , ∀n1, n2 ∈ ΦN , n1 6= n2
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Robust Optimization vs Stochastic Programming
Risk-Neutral Case

Cost Robust Optimization Stochastic Programming
Energy disp. 19 015.55 17 525.95
Up reserve 1529.04 1395.77
Down reserve 0 526.68
Total day-ahead 20 544.59 19 448.40

Mean CVaR95% VaR100% Mean CVaR95% VaR100%

Energy redisp. 2671.12 7223.69 7943.22 2176.31 9236.00 10 045.83
Load-shedding 19.49 374.75 9743.38 39.06 751.15 19 529.87
Total balancing 2690.60 7598.44 17 686.60 2215.37 9987.15 29 575.70

Total aggregate 23 235.19 28 143.03 38 231.19 21 663.77 29 435.55 49024.10
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Robust Optimization vs Stochastic Programming
Risk-Averse Case
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Robust Optimization vs Stochastic Programming
Computational Properties

Computational results with di�erent IEEE power system models
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Unit Commitment and Scheduling
for Heat & Power Systems

using A�nely Adjustable Robust Optimization
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Heat and Power System Example

Electricity 
market 

District heating Heat plant 

Heat 
tank 

CHP 
(extraction) 

CHP 
(backpressure) 
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A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1, . . . ,NT )

Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)

...

Oper. h NT Uncertainty at time NT unfolds and units are re-dispatched
(based on all realizations)

Marco Zugno 12/01/2015
24/41



Mathematical Framework Energy & Reserve Dispatch CHP Unit Commitment & Scheduling Conclusion

A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1, . . . ,NT )

Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)

...

Oper. h NT Uncertainty at time NT unfolds and units are re-dispatched
(based on all realizations)

Marco Zugno 12/01/2015
24/41



Mathematical Framework Energy & Reserve Dispatch CHP Unit Commitment & Scheduling Conclusion

A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1, . . . ,NT )

Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)

...

Oper. h NT Uncertainty at time NT unfolds and units are re-dispatched
(based on all realizations)

Marco Zugno 12/01/2015
24/41



Mathematical Framework Energy & Reserve Dispatch CHP Unit Commitment & Scheduling Conclusion

A Multi-Stage Uncertain Problem

The problem is uncertain (heat demand, prices) and multi-stage:

Day-ahead Determine unit commitment and schedule for the following
day (periods 1, . . . ,NT )

Oper. h 1 Uncertainty at time 1 unfolds and units are re-dispatched
(based on realizations until time 1)

Oper. h 2 Uncertainty at time 2 unfolds and units are re-dispatched
(based on realizations until time 2)

...

Oper. h NT Uncertainty at time NT unfolds and units are re-dispatched
(based on all realizations)

Marco Zugno 12/01/2015
24/41



Mathematical Framework Energy & Reserve Dispatch CHP Unit Commitment & Scheduling Conclusion

Robust Optimization Approach

Our approach based on Robust Optimization (RO)

Minimize
x,y(·)

c>x + Eω
{
q>ωy(ω)

}
(1)

s.t. Ax ≥ b , (2)
Tx + Wy(ω) ≥ hω , ∀ω ∈ U (3)

where
• x are �rst-stage decision (unit commitment, schedule)
• y(·) are recourse functions of the uncertainty ω (unit operation)
• The solution is optimal in expectation (1)
• The solution is feasible for any ω in an uncertainty set U (3)
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Linear Decision Rules

Optimal recourse decision approximated via linear decision rules

yit(ω) = ŷit +
t∑

τ=1

Yitτωτ , ∀i, t

ω

y 

• Recourse decision depends on history of uncertainty—up to now (t)
• Independence on future uncertainty realizations (τ > t):
non-anticipative
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Final Linear Reformulation

We make the following assumptions:
• linear dependence of parameters to uncertainty: qω = Qω, hω = Hω
• budget uncertainty set de�ned by Dω ≥ d

By duality arguments, the problem can be reformulated linearly:

Min.
x,Y,Λ

c>x + tr
{
Q>Y

(
Σω + E{ω}E{ω}>

)}

s.t. Ax ≥ b ,

Λ>d ≥ −Tx ,
D>Λ = (WY− H)> ,

Λ ∈ RR×L2
≥0
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Case-Study Setup

Three production facilities with storage
• Extraction CHP (AMV3, AVV1)
• Back-pressure CHP (AMV1)
• heat-only plant

Historical heat load from VEKS
• RO: budget uncertainty set (tunable
interval size and budget)

• SP: Gaussian scenarios

Power prices from NordPool
• SP: Gaussian scenarios correlated
with heat demand

Figure from HOFOR.dk
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Back-pressure vs Extraction CHP Units

Back-pressure CHP unit
• constant heat/power ratio (rb)

P 

H 

rb 

Extraction CHP unit
• more �exible operation in heat/power space
• feasible region approximated by polyhedron

P 

H 

rb 

rv 
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Parameters of the System

Extraction Back-pressure Heat-only
Power/heat ratio rb 0.64 0.28 0
Electricity loss for heat prod. rv -0.13 – –
Fuel per electricity unit ϕp 2.40 2.40 –
Fuel per heat unit ϕq 0.31 0.36 1.09
Minimum fuel input f 120 72.24 0
Maximum fuel input f 631.20 516 1086.96
Ramp-up/-down for fuel input r/− r 150 50 1086.96
Minimum heat output q 0 70 0
Maximum heat output q 331 500 1000
Fuel marginal cost c 24.16 12.75 93.96
No-load cost c0 0 0 2684.56
Start-up/shut-down cost cSU/cSD 7 382.55 6 040.27 0
Minimum up-time TU 2 5 0
Minimum down-time TD 2 5 0
Provides real-time �exibility yes no yes
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Scheduling Example
Results from the Deterministic Model
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Scheduling Example
Results from the Robust Optimization Model
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Tuning the Need for Flexibility

The extraction unit is the main provider of �exibility

Unit Γ

2 4 6 8 10
Total heat dispatch MWh 265.20 444.27 622.24 811.31 1250.74
Periods online h 4 5 6 8 24
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Piecewise Linear Decision Rules

We can de�ne di�erent decision rules for partitions of the uncertainty set

• 2 di�erent rules for each dimension of
the uncertainty

• partitioning demand deviation about 0
straightforward choice

⇓
di�erent response to de�cit/surplus
heat demand ω

y 
LDR 

PLDR 
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Linear vs Piecewise Linear Decision Rules
Dispatch Improvement

Dispatch for extraction unit during peak-demand day

Decision rule Unit Γ

2 4 6 8 10
Linear MWh 7944.00 7783.77 7572.89 7377.16 7200.06
Piecewise-linear MWh 7944.00 7944.00 7944.00 7944.00 7944.00
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Linear vs Piecewise Linear Decision Rules
In-Sample vs Out-of-Sample Results

Theoretical improvement

Interval size (# sd)

4  3.63.22.82.42  
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4 
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%
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Empirical improvement

Interval size (# sd)

4  3.63.22.82.42  
2 
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10

-2

0

2

4

%

Γ

• decision rules not binding in practice
• anticipative out-of-sample evaluation (stochastic programming)
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Price of Robustness

Sensitivity analysis can help tune the RO parameters (cost vs robustness)

Average pro�t

Interval size (# sd)

2  2.42.83.23.64  
108 6 4 2 

4

4.5

×105

Γ

Worst-case load-not-served

2  

Interval size (# sd)

2.42.83.23.64  
10
8 

6 
4 

2 

400

0

200

(M
W

h)
Γ
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RO vs Alternative Methods
Out-of-Sample Analysis

Model Interval
Γ Average pro�t (e) Load not served (MWh)

radius (# sd) largest expected
2.00 2 449 301.37 329.38 7.88
2.00 4 446 337.45 198.93 3.38
2.00 6 443 598.68 144.68 2.51

RO-PLDR 2.40 2 443 474.44 127.20 0.51
2.40 4 440 776.45 39.64 0.29
2.40 8, 10 438 086.22 31.58 0.20
2.80 2 432 707.89 16.59 0.05
3.20 2–10 419 281.79 0.00 0.00

DET – – 455 815.78 745.78 69.52

SP – – 448 945.73 159.90 2.13

• Load-not-served not penalized in the objective function
• Out-of-sample analysis based on SP
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Conclusion

• Robust optimization addresses some of the shortcomings of
stochastic programming

• intractability (large scenario sets)
• violation of non-anticipativity in multi-stage problems

• Simpler models of the uncertainty are required
• uncertainty sets
• low-order moments (mean, standard deviation, etc.)

• Trade-o� between optimality and conservativeness can be tuned via
uncertainty set parameters

• similar results in terms of CVaR for risk-averse SP (ARO model for
energy and reserve)

• tunable conservativeness in AARO model for CHP units

• Promising results in terms of scalability
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Thank you for your attention!

Q&A Session
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Inner Problem Reformulation via Duality

From min-max-min to min-max-max:

min
x

cxTx+max
∆w

max
λ,µ

(−∆w − Qx)T λ+ (l−Mx− N∆w)Tµ

s.t. PTλ+ LTµ = cy ,
µ ≥ 0 ,

s.t. H∆w ≤ h ,
s.t. Fx = d− ŵ ,

Gx ≥ g .

Inner max-max problem can be merged into a single bilinear maximization
problem
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Solution via Cutting-Plane Method

min
x,β

cxTx + β

s.t. β ≥ −∆wT
kλk + (l− N∆wk)T µk − (λkQ + µkM) x , ∀k ,

Fx = d− ŵ ,

Gx ≥ g .

1 Start with a lower bound β for the recourse cost
2 Find optimal �rst-stage solution x for the approximation (lower bound)
3 Calculate worst-case recourse cost (upper bound)
4 Generate cut for the vertex, go back to 2
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Subproblem Choice vs Uncertainty Set

Point 3 in the cutting-plane method requires the solution of a bilinear
program

• Simple, “easy-to-enumerate” uncertainty sets (budget)
• Heuristic methods (suboptimal)

We want to be able to solve the problem
• exactly
• for any polyhedral uncertainty set

w1

w2

b

b
b

b
b

•ŵ

W

b

b
b

b
b

So far only “easy-to-enumerate” polyhedral sets have been considered, or
heuristic techniques
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Reformulation of the Problem (1)
Swapping Inner Problems

The inner problems can be swapped:

min
x

cxTx+max
λ,µ

− (Qx)Tλ+ (l−Mx)Tµ+max
∆w
−
(
λT + µTN

)
∆w

s.t. H∆w ≤ h , : ξ ,

s.t. PTλ+ LTµ = cy ,
µ ≥ 0 ,

s.t. Fx = d− ŵ ,

Gx ≥ g ,
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Reformulation of the Problem (2)
Using Strong Duality

The inner problem is linear ⇒ strong duality holds:

−
(
λT + µTN

)
∆w︸ ︷︷ ︸

objective function

= hTξ

We can exchange a bilinear term with a linear one, but the innermost
problem becomes a minimization problem

• We can enforce KKT conditions to guarantee optimality and get rid of
a level
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Reformulation of the Problem (3)
Final Formulation

min
x

cxTx+ max
λ,µ,∆w,ξ

− (Qx)Tλ+ (l−Mx)Tµ+ hTξ

s.t. 0 ≤ ξ ⊥ h− H∆w ≥ 0 ,

HTξ = −λ− NTµ ,

PTλ+ LTµ = cy ,
µ ≥ 0 ,

s.t. Fx = d− ŵ ,

Gx ≥ g .

⊥ indicates that the product of the operands is 0⇒ this can be linearized
using binary variables (MILP)

Marco Zugno 12/01/2015
47/41



RO vs Alternative Methods
Out-of-Sample Analysis (Spring)

Model Interval radius (# sd) Γ Average pro�t (e) Heat load not served (MWh)
largest expected

RO-PLDR
2.00 2 251 514.22 217.26 5.70
2.40 2 250 505.55 6.78 0.01
4.00 2 248 484.94 0.00 0.00

DET – – 260 927.88 340.15 49.74

SP – – 257 295.35 76.17 1.54
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RO vs Alternative Methods
Out-of-Sample Analysis (Summer)

Model Interval radius (# sd) Γ Average pro�t (e) Heat load not served (MWh)
largest expected

RO-PLDR 2.00 2 88 423.27 0.00 0.00
DET – – 94 413.41 117.00 16.10
SP – – 92 356.87 0.00 0.00
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RO vs Alternative Methods
Out-of-Sample Analysis (Autumn)

Model Interval radius (# sd) Γ Average pro�t (e) Heat load not served (MWh)
largest expected

RO-PLDR 2.00 2 249 631.81 90.35 0.41
2.40 2 248 673.51 0.00 0.00

DET – – 259 135.23 238.72 12.01
SP – – 255 836.17 99.71 0.54
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