Classification of electricity consumption
using smart meter data
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Presentation Outline

e Systematic Literature Review

— Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data
— http://www.mdpi.com/1996-1073/10/5/584

e Analysis
— SydEnergi data
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Smart Meter Papers
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Common Clustering methods and workflow
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Metode Total

K-Means 65%0
Hierarchical 45%0
Fuzzy K-Means 12%
Follow-The-leader 9%
Mixture Model 9%
K-Medoid 6%
Neural Network 6%
Fast Fourier Transform 3%
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Is it possible to classify smart meter data...?
Classification 10 meters 3 classes k-means
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(ENSYMORA data)

DTU Management Engineering, Technical University of Denmark 22 May 2017

=
—]
—

i



8

SydEnergi Smart Meter Data
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100 Apartments with district heating in Esbjerg.
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January 2011 (11%-17t) 4 meters (mon-sun)
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January 2011 1 meter
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Optimum number of clusters
K-means classification: 2-20 classes, 100 meters

Data selected: Normalized Week (11-17)
Random seed selected: 12345
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Mean of 2 largest classes

Class means from 2 largest classes from K-means, normalized data, (Monday-Sunday)
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2 largest classes all meters

Class means from 2 largest classes from K-means, normalized data, (Monday-Sunday)
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Conclusion

» Classification is possible

— Cluster dispersion is large
— Not much help from reducing time window, month...week...day...

e Potential:

— Adding Socio-economicdemographic and housing data
— Feature extraction of meter data:

e Wavelets / Splines

e Principal components

= Account for autocorrelation...

e Weather

e Audience input...
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