TotalFlex

 et market based system for flexibility based on the Flex-Offer concept

Presentation at Cities workshop januar 25th 2017

TotalFlex presentation

- Agenda
 - Introduction to Neogrid Technologies
 - Introduktion to TotalFlex
 - Flex-Offer concept
 - Market Place for flexibility actors
 - Market Place functionality
 - Pricing
 - Settlement
 - Next step

Neogrid Technologies ApS

Background

- Founded in 2009
- +30 years experience from mobile communication
- Involved in 10+ national and international research projects within Smart Grid And Energy Optimization
- 7 employees
- www.neogrid.dk

Project highlights

- Time Schedule: Start 2012 End 2016
- Partners:

• Budget: 4.7 M€/41 MY

Work Packages

TotalFlex

The global challenge

TotalFlex focuses on these two major global challenges:

Increasing share of fluctuating electricity in the grid

- Activation of demand response
- Syncronise consumption with production
- Export of "cheap" electricity out of Denmark
- Major expense to "stand by" power plants

Global power consumption increasing due to increased wealth and conversion from fossile-based consumption to green consumption (i.e. heat pumps and Electical Vehicles)

- Activation of demand response
- Strengthen the grid
- Move consumption away from peak hours

Background - built-in conflict

Facilitate flexibility

Objective

The objective with TotalFlex is to design a flexible, attractive and cost-effective electricity system for *any* size of flexible consumption and production.

- Power customers are rewarded by the highest bidder for the flexibility provided
- The electricity system is better balanced
 - Consumption and production are synchronous
 - Lower prices for system services
- DSO postpones grid reinforcement due to bottlenecks and congestion are avoided

Flex-Offer concept

Flexible Electricity Consumers and Producers

Flexibility Offer (Flex-Offer) allows unified modelling of a flexible consumer/producer in **ALL these cases**

Where is the flexibility? Heat pump case

StyrDinVarmepumpe Heat pump connection

Typcial heat pump flexibility

Flex-Offer schedule

The cycle of Flex-Offer

Market Place - facts

- What is sold in the marketplace?
 - The right to schedule flexibility
 - Flexibility here and now, next day or over a long period
- What does a marketplace?
 - Finds the highest price to the seller for the offered flexibility
 - No guarantee for "winning"
 - Provides an economic optimum
- Which actors exist (who buys and sells?)
 - Electricity customers through aggregators
 - Balance responsible parties with access to existing energy markets
 - DSOs
 - TSOs
- All flexible resources are direct controlled, not price controlled

Market Place

- TotalFlex supports existing electricity phases today:
 - Future markets
 - Day ahead
 - Intra hour

Market Place – Actors and their motivations

- Prosumers, owners of flexible resources
 - Much flexibility can be utilized without loss of comfort
 - Future heat pumps and EVs are Smart Grid Ready
 - No markets for small amounts of flexibility today
- Aggregator
 - Specializes in specific types of consumption and production
 - Aggregates Flex-Offers to fit various markets
 - Flexibility sales price should cover:
 - Contract with prosumer
 - Operation and transaction cost
 - Potential imbalance cost
 - >> Own earning

Market Place Actors and their motivations

- DSO
 - Reducing bottlenecks (LV / MV) rather than grid reinforcement
 - Can enter both long and short term agreements
 - Alternative to bilateral agreement
 - The Market Place offer no guarantee of getting a product home
- BRP
 - Reduce internal imbalances
 - Intra-hour Flex-Offers can be used in the regulating power market

Market Place pricing

- How is the Market cleared?
 - Mixed Integer Linear Programming (MILP) formulation
 - One price per timeslot per kWh
 - Maximise social surplus
 - Activate "Lowest buying price" and "highest sales price" first
 - It is possible to sell the partial quantities of a product
 - Closed anonymous auction
 - Fixed price per unit from each buyer and seller in each time slot
 - Only activated in one direction per time slot
 - Supported constraints so far:
 - Max/min/specific amount across time slots
 - Flex-Offer belonging to an electricity area, i.e. low voltage radial
 - Flex-Offer belonging to a specific BRP
 - Minimum activation amount per timeslot (i.e. regulating power market)

Market Place clearing - math

• Market clearing with N timeslots and K buyers and J sellers:

min

$$\sum_{i=1}^{N} \sum_{k=1}^{K} p_{k}^{b} |q|_{i,k}^{b} - \sum_{i=1}^{N} \sum_{j=1}^{J} p_{j}^{s} |q|_{i,j}^{s}$$

subject to

$$\sum_{k=1}^{K} q_{i,k}^{b} = \sum_{j=1}^{J} q_{i,j}^{s}$$
, for negative and positive part separately

$$q_{min,i,j,k} \leq q_{i,j,k} \leq q_{max,i,j,k}$$

$$q_{min,i,j,k} \leq 0, \quad q_{max,i,j,k} \geq 0$$

$$p_{min,i,k} \geq p_{max,i,j}$$
BRP constraints
Geographical area constraints

 $p_{i,k}^{b}, p_{i,j}^{s}$ unit price from the kth buyer and jth seller respectively for the activated flexibility for ith timeslot

 $q_{i,k}^{b}, p_{i,j}^{s}$ buying and selling activated flexibility relative to reference from the kth buyer and jth seller for ith timeslot

Market Place - Intra hour

Market Place example

Flex-offers with price info on the market

Market Place example

Linear price/quantity relationship assumed

TotalFlex GUI

TotalFlex GUI

TotalFlex (B) Home

Market for det valgte område(Current timeslot)

Show clearingdata

Show history

TotalFlex GUI

	n e	IO DU
		22 122 C

Selling flex-offer								
Timeslot	Min. Energy (MW)	Max. Energy (EUR/MW)	Ref. Energy	Price per unit	Fixed price			
11	1,837.761	1,581.59	0	0	0			
11	1,901.304	1,699.67	0	0	0			
13	1,752.151	1,999.09	0	0	0			
12	1,9 <mark>65.335</mark>	1,464.76	0	0	0			
11	1,667.065	1,781.34	0	0	0			
12	1,753.920	1,441.24	0	0	0			
12	1,451.293	1,759.16	0	0	0			
8	1,416.489	1,179.34	0	0	0			
9	1,404.430	1,127.82	0	0	0			
9	1,364.484	1,076.09	0	0	0			
19	3,210.833	2,631.94	0	0	0			

Buying flex-offer						
Timeslot	Winning	Energy (EUR/MW)	Price			
11	1,837.761	1,581.59	0			
11	1,901.304	1,699.67	0			
13	1,752.151	1,999.09	0			
12	1,965.335	1,464.76	0			
11	1,667.065	1,781.34	0			
12	1,753.920	1,441.24	0			
12	1,451.293	1,759.16	0			
8	1,416.489	1,179.34	0			
9	1,404.430	1,127.82	0			
9	1,364.484	1,076.09	0			
19	3,210.833	2,631.94	0			

TotalFlex - end status

- A market-based trading system for flexibility has been demonstrated
 - Aggregators are sellers and DSO and BRP are buyers
- Total Flex shows a path where small electricity customers can benefit from their flexibility
- Total Flex fits in Market Model 2.0 work
- The following functionality is developed:
 - Data collection from flexible resources
 - Generation, aggregation of Flex Offers
 - Clearing the Market
 - Disaggregation of scheduled Flex-Offers
 - Execution of Flex-Offers to control the flexible resources
- TVPP, IT tool to DSO for simple monitoring and prediction of bottleneck locations
- CVPP, IT management tool Flex Offers
- Marketplace, which can coexist with existing markets

Arrowhead

Process and energy system automation

4 years project 68M€ 78 partners Coordinated by

an ARTEMIS COLE

www.arrowhead.eu <jerker.delsing@ltu.se

ARTEMIS Industry Association The association for R&D actors in embedded systems

www.arrowhead.eu

Arrowhead IoT architecture

Arrowhead SoA framework

Demonstration setup

? Questions

<u>For more information, contact:</u> Neogrid Technologies Per D Pedersen or Henrik Stærmose Niels Jernes Vej 10 9220 Aalborg Ø <u>pdp@neogrid.dk hls@neogrid.dk</u> +45 3065 4661

