Imperial College London

Aggregation and control of smart refrigerators: semi-autonomous control of heterogeneous appliances

<u>Simon Tindemans</u>, Vincenzo Trovato, Antonio De Paola, Michael Evans, David Angeli, Goran Strbac

s.tindemans@imperial.ac.uk

EERA JP ESI - SP1 & SP2 workshop 4 Nov 2016

General: the long tail of flexibility

Many small appliances can collectively provide significant flexibility

- Primary service should be preserved (within limits), and without much user interaction
- Small per-device flexibility contribution, so controller/comms budget is small
- Significant heterogeneity

Opportunities

- Very large number of devices, so large-number statistics apply (at least at regional/national levels)
- Regular consumption patterns allow for aggregate prediction

Imperial College

London

Flexible refrigeration: from 'what' to 'how' Imperial College

The opportunity

- Refrigerators represent 5-15% of system load (est. 2-3GW in GB)*
- Load shifting for ~30 minutes is free* secondary use

The challenge

- Maintain cooling performance: Secondary use (flexibility) should not compromise the primary use (cooling) of devices.
- **Robustness and scalability:** Reliance on real-time communication may result in bottlenecks and single points of failure
- **Controllability:** Ensure sufficient control over power consumption, and avoid *unwanted interactions*.

The demand response control spectrum

Imperial College London

Our approach: semi-autonomous control

- Collective goals are set centrally
- *Actions* are decided locally, with reference to expected *group behaviour*

Direct dispatch of flexible resources

Goals and actions are decided centrally, or in a distributed fashion

- Controllability
- Requires real-time communication
 - Limited autonomy
 - Privacy concerns

Indirect control using incentives

Decentralised actions on the basis of a non-local control signals.

Useful taxonomy of indirect control in Heussen *et al., IEEE PES ISGT Europe 2012*

High-level approach

Imperial College London

"Semi-autonomous control"

Characteristics (details in following slides)

- Appliances ...
 - receive a signal of control intent (not price)
 - always give priority to local constraints (e.g. temperature)
 - act stochastically on the basis of an inferred (sub)population response

Imperial College

london

- The aggregator ...
 - constructs a model of aggregate appliance capabilities
 - offers aggregate services to the market
- On short time scales, appliances act autonomously
- On long time scales, appliances exchange aggregate control models with an aggregator

Control through the law of large numbers

Imperial College

Simon Tindemans, Vincenzo Trovato, Goran Strbac, "Decentralised control of thermostatic loads for flexible demand response.", IEEE Transactions on Control Systems Technology, (2015)

Aggregate convergent response

Imperial College

London

Controller implementation

1. Each appliance knows its **state** and **model**

$$\frac{dT(t)}{dt} = \begin{cases} -\alpha(T(t) - T_{on}) & \text{(on)} \\ -\alpha(T(t) - T_{ambient}) & \text{(off)} \end{cases}$$

4. Determine device-specific actions, based on the actual device temperature

2. Construct a *homogeneous* 'virtual population' with random temperatures.

3. Manipulate the 'virtual population' to control its (virtual) power consumption in line with $\Pi(t)$.

Imperial College London

Controller implementation

1. Each appliance knows its **state** and **model**

2. Construct a *homogeneous* 'virtual population' with random temperatures.

Imperial College

London

Each appliance considers itself as a random representative of a population...

- 4. Determine device-specific actions, based on the actual device temperature
- **3. Manipulate the 'virtual population'** to control its (virtual) power

...and takes actions in line with population objectives

The leaky storage unit

Imperial College London

Vincenzo Trovato, Simon H. Tindemans, Goran Strbac, *"The Leaky Storage Model for optimal multi-service allocation of thermostatic loads."*, IET Generation, Transmission & Distribution (2016)

Aggregation of leaky storage units

Heterogeneous models are merged into a conservative envelope flexibility model.

The model is **sufficient and linear**, for easy embedding in dispatch models.

Imperial College London

Case study: Optimal use of different device classes

Service allocations reflect physical characteristics:

Imperial College

London

- Slow thermal time constants are good for energy arbitrage
- Low duty cycles in domestic appliances leave headroom for high frequency response.

Communication requirements

Robust 'semi-autonomous' operation

We have developed an end-to-end control scheme for TCLs that is

- **Nondisruptive**: fridges respect local constraints at all times and are free to respond to individual cooling requirements
- **Decentralised**: (semi-)autonomous operation does not require real-time command and control infrastructure
- Accurate: accurate control over aggregate power consumption, despite on/off character of fridges and population heterogeneity

Open questions and further development

- **Robustness:** How sensitive is this scheme to model misspecification?
- The limit of large but not infinite numbers: mean field feedback effects
- Local knowledge: How much does an appliance need to know about the (sub-)population?
- Wider applicability to other appliances.
- Practical demonstration

Want to know more?

Imperial College London

s.tindemans@imperial.ac.uk

- Decentralised control of thermostatic loads for flexible demand response. Simon Tindemans, Vincenzo Trovato, Goran Strbac IEEE Transactions on Control Systems Technology (2015)
- The Leaky Storage Model for optimal multi-service allocation of thermostatic loads. Vincenzo Trovato, Simon Tindemans, Goran Strbac IET Generation, Transmission & Distribution (2016)
- A Stochastic Approach to "Dynamic-Demand" Refrigerator Control. David Angeli, Panagiotis-Aristidis Kountouriotis IEEE Transactions on Control Systems Technology, 20(3), pp.581–592.
- Distributed Control of Micro-Storage Devices With Mean Field Games. Antonio De Paola, David Angeli, Goran Strbac *IEEE Transactions on Smart Grid*, (2016).
- Nondisruptive decentralized control of thermal loads with second order thermal models Simon Tindemans, Goran Strbac
 2016 IEEE PES General Meeting, Boston.