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General:	the long	tail of	flexibility

Many	small	appliances	can	collectively	provide	significant	flexibility

Constraints/challenges
• Primary	service	should	be	preserved	(within	limits),	and	without	

much	user	interaction
• Small	per-device	flexibility	contribution,	so	controller/comms budget	

is	small
• Significant	heterogeneity

Opportunities
• Very	large	number	of	devices,	so	large-number	statistics	apply	(at	

least	at	regional/national	levels)
• Regular	consumption	patterns	allow	for	aggregate	prediction



Flexible	refrigeration:	from	‘what’	to	‘how’

The	opportunity
• Refrigerators	represent	5-15%	of	

system	load	(est.	2-3GW	in	GB)*
• Load	shifting	for	~30	minutes	is	

free*	secondary	use
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potential	zero	cost	flexibility!

The	challenge
• Maintain	cooling	performance: Secondary	use	(flexibility)	should	not	

compromise	the	primary	use	(cooling)	of	devices.
• Robustness	and	scalability:	Reliance	on	real-time	communication	

may	result	in	bottlenecks	and	single	points	of	failure
• Controllability:	Ensure	sufficient	control	over	power	consumption,	

and	avoid	unwanted	interactions.
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The	demand response	control	spectrum

Our	approach:	semi-autonomous	control
• Collective	goals are	set	centrally
• Actions are	decided	locally,	with	

reference	to	expected	group	behaviour

Indirect	control	
using	incentives

Decentralised actions	on	the	
basis	of	a	non-local	control	
signals.

Useful	taxonomy	of	indirect	
control	in	Heussen et	al.,	IEEE	
PES	ISGT	Europe	2012

Goals	and	actions	are	
decided	centrally,	or	in	a	
distributed	fashion

Direct	dispatch	of	flexible	
resources

• Requires	real-time	communication
• Limited	autonomy
• Privacy	concerns

V • Controllability



High-level	approach

Aggregator

Aggregate	load	dispatchModel	of	collective	
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“Semi-autonomous	control”

Characteristics (details	in	following	slides)
• Appliances	...

• receive	a	signal	of	control	intent	(not	price)
• always	give	priority	to	local	constraints	(e.g.	temperature)
• act	stochastically	on	the	basis	of	an	inferred	(sub)population	

response
• The	aggregator	...

• constructs	a	model	of	aggregate	appliance	capabilities
• offers	aggregate	services	to	the	market

• On	short	time	scales,	appliances	act	autonomously
• On	long	time	scales,	appliances	exchange	aggregate	control	models	

with	an	aggregator



𝐸 𝑃$ 𝑡 = 𝑃'$×Π(𝑡)

Control	through	the	law	of	large	numbers

control	intent
modulates	power	
consumption	of	all	
appliances
Π 𝑡 = 1 for	steady	state

steady	state	power	consumption	
of	appliance	a

power	consumption
of	appliance	a (a	random	process)

𝑃-.-$/ = 0𝑃$(𝑡)
�

$

= 𝑃'-.-$/×Π 𝑡 + 𝒪(𝑁56/8)
Π(𝑡)

Simon	Tindemans,	Vincenzo	Trovato,	Goran	Strbac,	“Decentralised control	of	thermostatic	loads	for	
flexible	demand	response.”,	IEEE	Transactions	on	Control	Systems	Technology,	(2015)



Aggregate	convergent	response
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Collectively,	fridges	track	
the	reference	signal	𝚷 𝐭 –
even	when	each	appliance	
is	different!	

N=1000	domestic	refrigerators



Controller	implementation
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2. Construct	a	homogeneous ’virtual	
population’	with	random	temperatures.

4. Determine	device-specific	actions,	
based	on	the	actual	device	temperature
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3. Manipulate	the	‘virtual	population’	
to	control	its	(virtual)	power	
consumption	in	line	with	Π 𝑡 .	

𝑑𝑇(𝑡)
𝑑𝑡 = = −𝛼(𝑇(𝑡) − 𝑇.@)

−𝛼(𝑇(𝑡) − 𝑇$ABCD@-)
				
(on)
(off)

1. Each	appliance	knows	its	
state and	model

Π(𝑡)
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1. Each	appliance	knows	its	
state and	model

Π(𝑡)
Each	appliance	considers	itself	as	a	random	

representative	of	a	population...

...and	takes	actions	in	line	with	
population	objectives



The	leaky	storage	unit

Six-parameter	model	to	describe	the	flexibility	
of	a	homogeneous	population	

𝑑𝑆(𝑡)
𝑑𝑡 = 𝑃(𝑡) − 𝛼𝑆 𝑡

with	constraints:

𝑃AC@ ≤ 𝑃 𝑡 ≤ 𝑃A$K
𝑆AC@ ≤ 𝑆(𝑡) ≤ 𝑆A$K

L 𝑆 𝑡 𝑑𝑡 = 𝑆'
M

'
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preserve	
the	food!

Vincenzo	Trovato,	Simon	H.	Tindemans,	Goran	Strbac,	“The	Leaky	Storage	Model	for	optimal	multi-
service	allocation	of	thermostatic	loads.	“,	IET	Generation,	Transmission	&	Distribution	(2016)



Aggregation	of	leaky	storage	units

Heterogeneousmodels	are	merged	
into	a	conservative	envelope	
flexibility	model.

The	model	is	sufficient	and	linear,	
for	easy	embedding	in	dispatch	
models.	
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Aggregator
Aggregate	load	dispatchModel	of	collective	
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Case	study:	
Optimal	use	of	different	device	classes

domestic commercial

Service	allocations	reflect	physical	
characteristics:
• Slow	thermal	time	constants	

are	good	for	energy	arbitrage	
• Low	duty	cycles	in	domestic	

appliances	leave	headroom	for	
high	frequency	response.



Communication	requirements
Robust	‘semi-autonomous’	operation

aggregator

response	design	cycle

operational	cycle

1. Measure	temperature
2. Update	model
3. Switch	on/off

real	
time

ahead	of	
time

Significant	changes	in:
• thermal	model
• constraints

real-time	control	
signal	Π(𝑡)

or

power	response	
model



Summary	and	outlook

We	have	developed	an	end-to-end	control	scheme	for	TCLs	that	is
• Nondisruptive: fridges	respect	local	constraints	at	all	times	and	are	free	

to	respond	to	individual	cooling	requirements
• Decentralised:	(semi-)autonomous	operation	does	not	require	real-time	

command	and	control	infrastructure
• Accurate:	accurate	control	over	aggregate	power	consumption,	despite	

on/off	character	of	fridges	and	population	heterogeneity

Open	questions	and	further	development
• Robustness: How	sensitive	is	this	scheme	to	model	misspecification?
• The	limit	of	large	but	not	infinite	numbers:	mean	field	feedback	effects
• Local	knowledge: How	much	does	an	appliance	need	to	know	about	the	

(sub-)population?
• Wider	applicability	to	other	appliances.
• Practical	demonstration



Want	to	know	more?

s.tindemans@imperial.ac.uk

• Decentralised	control	of	thermostatic	loads	for	flexible	demand	response.
Simon	Tindemans,	Vincenzo	Trovato,	Goran	Strbac
IEEE	Transactions	on	Control	Systems	Technology (2015)

• The	Leaky	Storage	Model	for	optimal	multi-service	allocation	of	thermostatic	loads.	
Vincenzo	Trovato,	Simon	Tindemans,	Goran	Strbac
IET	Generation,	Transmission	&	Distribution	(2016)

• A	Stochastic	Approach	to	“Dynamic-Demand”	Refrigerator	Control.	
David	Angeli,	Panagiotis-Aristidis Kountouriotis
IEEE	Transactions	on	Control	Systems	Technology,	20(3),	pp.581–592.	

• Distributed	Control	of	Micro-Storage	Devices	With	Mean	Field	Games.	
Antonio	De	Paola,	David	Angeli,	Goran	Strbac
IEEE	Transactions	on	Smart	Grid,	(2016).	

• Nondisruptive decentralized	control	of	thermal	loads	with	second	order	thermal	models
Simon	Tindemans,	Goran	Strbac
2016	IEEE	PES	General	Meeting,	Boston.


