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The biggest challenge of our time

Temperature anomalies in the last 11 000 years

°C compared to 1951-1980 average
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The biggest challenge of our time

Atmospheric CO2 concentration in the last 40 000 years

in ppm (particles per million)
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Humans can’t survive in high temperature /
humidity regions

Distribution of recent lethal heat events Exposition to extreme conditions for > 20 days a year
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2°C = One covid a year

Exhibit 1 | COVID-19 Has Triggered the Largest Emissions Drop Since World War I

Global annual greenhouse gas emissions (billion tons of CO2 equivalent)
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Sources: EDGARVS.0; Food and Agriculture Organization of the United Nations; PRIMAP-hist v2.1; Global Carbon Project; Intergovernmental Panel on Climate Change; United Nations Environment
Programme “Emissions Gap Report 2019”; World Resources Institute; BCG analysis.

Note: These figures exclude land use, land use change, and forestry.

1 Assumes that greenhouse gas emissions continue to grow at 1.1% per annum after 2018 (corresponding to the current policies scenario in United Nations Environment Programme “Emissions Gap Report 2019”).
2 Assumes that countries decarbonize in accordance with their intended nationally determined contributions (INDCs) by 2030 and then continue on the same emissions trajectory until 2050.

3 Assumes 25% reduction by 2030 and net zero by 2070.

* Assumes 45% reduction by 2030 and net zero by 2050.



We're addicted to fossil fuels

Annual global energy consumption
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The biggest opportunity of our time

Energy is our ability to transform our environment.
Some measure it as GDP (&

>80% of our energy comes from fossil fuels

The global economy is entering the most profound
transformation in history, as we need to
reinvent >80% of the way we do things



Watch out for the pitfalls

e Rebound effect: new technologies almost always induce
more usage, thus more emissions

e \We need to make sure we accurately measure and restrict
emissions associated to increased usage.

Carbon accounting needs to be ubiquitous, standardised and
enforced



“the real dangeris when companies and politicians
are making it look like real action is happening,
when In fact, almost nothing is being done apart

from clever accounting and creative PR

- Greta Thunberg, July 23rd 2019, Paris
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W Electric vehicles’ climate impact in different energy mixes

Emissions in gCO2eq/km
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Meaningfully measuring the climate impact of electricity use

Location-based approach

ol

33%

67% coal

Using average carbon intensity

Market-based approach

100% 0%
100%
0% coal coal

Using “Guarantees of Origin” or RECs

Challenges with having both:

e 2 methodologies means
two consumers can claim
the same greenness

e Doesn’t match up with
taxpayers’ intuition

e Granular GOs (hourly)
duplicates the location-based
method

Market-based is a subsidy system,
not an accounting system.
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Getting rid of fossil fuels..
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In 2016, we built [Aelectricitymap.org

to map the world’s electricity emissions, in real-time

- 5000 daily active users, 100% organic
- >1300 github contributions with >90 country integrations
- Usedin TV debates, classrooms, universities, by policy makers..

ENVIRONNEMENT
=

GETITON 4 Download on the
» Google Play . App Store



https://github.com/tmrowco/electricitymap-contrib



http://www.youtube.com/watch?v=2lfehXp0gz4

CITIES research: computing the
marginal origin of electricity

Use case: when | charge my EV, Marginal cost ol
where does that electricity come €/MWh
from? 4

Power plants are dispatched by
increasing cost

When electricity demand is increased, Coal

the first power plant to increase its
production is cheapest that has spare

capacity

We call that power plant the marginal Nuclear

power plant. Renewable

Problem: the dispatch order is secret f ,\C,,evpauty

Current Demand



Computing the marginal origin of electricity

Changes in local generation (or import) due to changes in local demand
from one hour to the other
i
r 1
dX = 1(z) + g(z)dL

due to changes that are independent of
marginal emission factor

changes in local demand
(changes of temperature, wind speed, cloud coverage...)

1/ Create a linear model to reconstruct changes over time dX

Use Z as a feature vector (wind speed in each area, market prices in each area, etc..).

2/ Fit for both changes of local generation and import/exports for each zone

L1 regularization is used to select only the relevant features in Z (we have >500 features)
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Trying to reconstruct the past (examples)

generation interconnectors
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N-th order correlations

Assumption: an increase in import from zone A is equivalent to an increase in demand in zone A

Using a slightly adjusted flow-tracing method (not explained here), one can compute the nth-order matrix.
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Marginal origin of electricity in East Denmark
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tons of CO2eq avoided (yearly)

Applicationl: where to install renewables?
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-------- Additional emissions caused by installation (life cycle analysis)
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Application2: optimising time-of-use of electricity

GOf}gle The Keyword Latest stories  Product updates v~ Company news Q :

DATA CENTERS AND INFRASTRUCTURE

Our data centers now work harder
when the sun shines and wind blows

Ana Radovanovic Addressing the challenge of climate change demands a transformation in 27

Technical Lead for how the world produces and uses energy. Google has been carbon neutral
Carbon-Intelligent L R S S S
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Google’s energy journey towards 24// carbon-free

Carbon Neutrality

(Offsetting emissions)

Since 2007

Google has purchased enough
high-quality carbon offsets and
renewable energy to bring our net
operational emissions to zero.

100% Renewable Energy

(Reducing emissions)

Since 2017

Google has matched its global, annual
electricity use with wind and solar purchases.
However, our facilities still rely on carbon-based
power in some places and times.

24/7 Carbon-free Energy

(Eliminating emissions)

By 2030

Google intends to match its operational
electricity use with nearby (on the same
regional grid) carbon-free energy sources
in every hour of every year.
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Preliminary results

Baseline versus Carbon-aware Load

« = Baseline Load == Carbon-aware Load @ Carbon Intensity
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Our ambition is to enable a
data-driven transition to a low-carbon future

What data are you using to power your
transition?
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Democratising climate action

Olivier Corradi / @corradio
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