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Smart Electricity Meters ystem Architecture

Ingestion layer Processing layer Analytics layer
e Record and communicate whole-house electricity | | m m
consumption (e.g., hourly or every 15 minutes) ‘% | |
e Worldwide deployment expected to reach over Data processing platform \J T e
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e Hourly measurements enable time-of-use billing " R | Consumption” | - [ discovery
£
which can help reduce peak demand 3 Wﬂ”f:l'ﬂwz Forecasting Load classification
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All algorithms implemented inside the
database using PostgreSQL + MADLIib
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stem Functionalities

e Input: hourly whole-house smart meter time series and outdoor e Customer Dashboard
temperature eYour consumption (blue) vs. neighbourhood average
e QOutput: (yellow)
eFor each customer: simple visualization, histograms, temperature ePersonalized feedback

sensitivity analysis, daily load shapes
e Across customers: clustering, comparison with neighbourhood
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Example 1: Temperature Sensitivity Analysis via Degree-Day Plots
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e For climates with a summer and winter

e Step 1: fit piecewise regression lines for 10'", 50 and 90" percentiles
of hourly consumption as a function of temperature

e Step 2: obtain base load from 10™ percentile regression lines

e Step 3: obtain heating and cooling gradients from the 90" percentile
regression lines

e Step 4: obtain heating and cooling setpoints from the 90" percentile
regression lines

Load disaggregation: base load + activity load Load distribution

= 10th = 50th = Olth Observations = Bins Curve

Hourly Average Activity Load

Example 2: Daily Load Shapes via Time Series Auto-Correlation

>
-

Acknowledgements

This research was supported by the CITIES research project
(NO. 1035-00027B) funded by Innovation Fund Denmark.

Avg consumption, kKWh

Consumption, kWh

Tm:e 012345678910111213141516171819202122:3
The hour of the dav
e |dea: take whole-house smart meter time series (black) and remove the For More Information
effect of temperature via time-series autocorrelation with temperature e Liu X, Nielsen P S. Streamlining smart meter data analytics.
as the exogenous variable (blue) SDEWES2015.0558, 1-14, 2015
* Then plot the average consumption at each hour of the day e Liu X, Nielsen P S. A Hybrid ICT-solution for smart meter data

analytics. Journal of Energy, 2016.
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