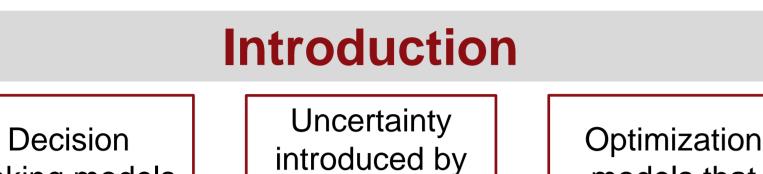

DTU Electrical Engineering Department of Electrical Engineering



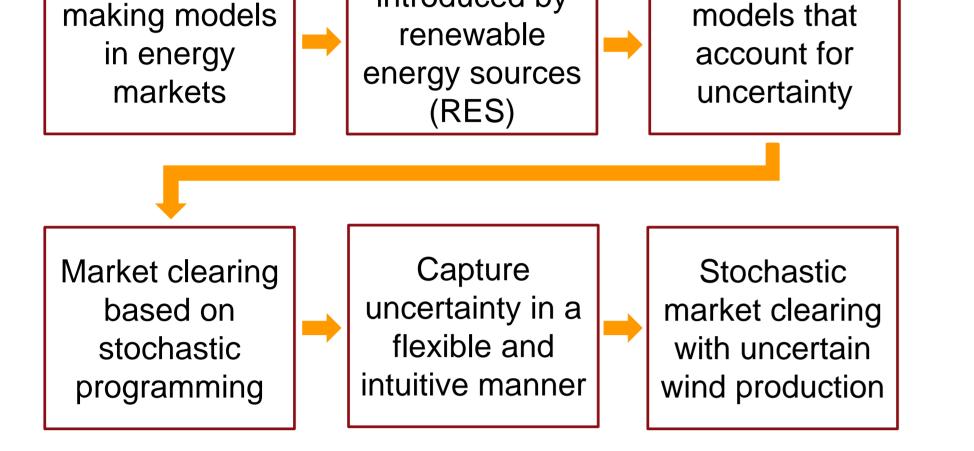
Stochastic Integrated Market for Electric Power and Natural Gas Systems

Christos Ordoudis, Pierre Pinson, Juan M. Morales

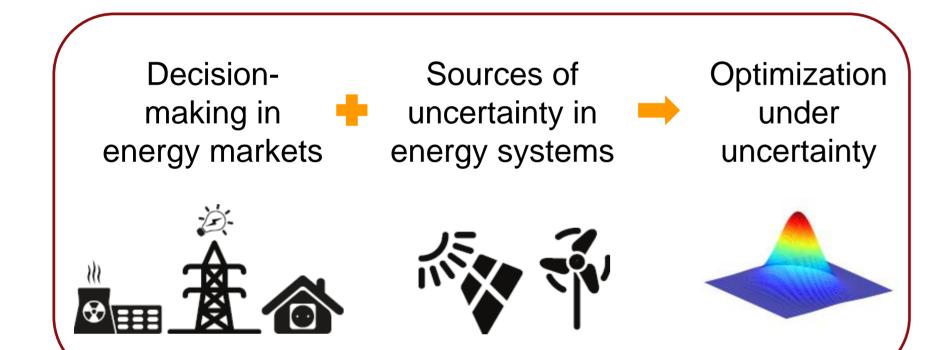
Technical University of Denmark

Electricity and Natural Gas Markets

Decoupled Approach


1) Economic dispatch of electricity system is solved and

 $G2(\sim$



Energy System Integration

Aim

- Efficiently align existing synergies towards the optimal operation of energy systems.
- Propose **new market structures** to provide adequate incentives to all market participants.
- Manage high uncertainty on both supply and demand sides.

the natural consumption of GFPPs in determined.2) Economic dispatch of natural gas system is solved.

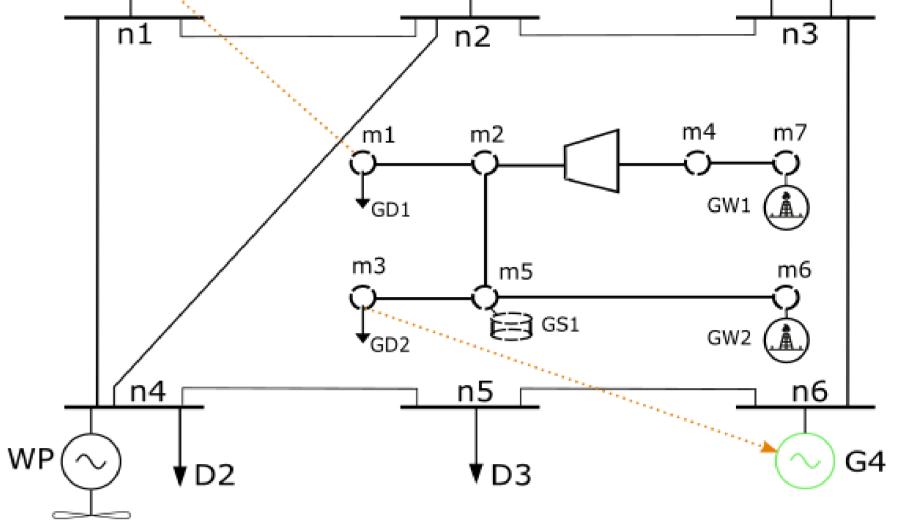
GFPPs A.

Integrated Approach

Simultaneously solve the economic dispatch of electricity and natural gas systems.

Optimization Models

The following models are used to determine the day-ahead dispatch of the electricity and natural gas systems.

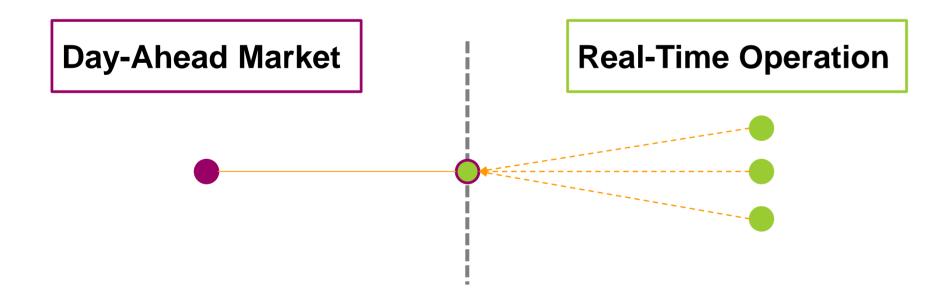

Day-ahead electricity cost.

Subject to

- Day-ahead operating constraints of electricity system.
- Wind power is constrained by its expected value.

GFPPs NG consumption is determined.

Minimize


Fig. 1: Power and natural gas systems.

	P _{max} (MW)	R ^(+/-) (MW)	η (km³/MW)	C (\$/MWh)
G1	100	0	-	20
G2	80	0	-	35
G3	60	60	0.205	_
G4	60	60	0.264	_
WP	200	-	-	0
	G _{max} (km ³)	Initial storage level (km ³)	Max in/outflow rate (km ³ /h)	C (\$/km ³)
GW1	150	-	-	184
GW2	170	-	-	110
GS1	150	75	50	147

Electricity and Natural Gas

Strong link between the electricity and natural gas systems is increased by integration of **renewable energy sources** and the need for flexible reserves provided by GFPPs.

Market Clearing Approaches

Conventional market clearing

Sequential clearing of two trading floors:

- 1) Day-ahead market is cleared based on deterministic description of uncertain wind power production.
- 2) A balancing market is cleared for real-time operation.

Day-Ahead Market

Real-Time Operation

Day-ahead natural gas cost.

Subject to

• Day-ahead operating constraints of natural gas system.

Conventional – Integrated

Minimize

Day-ahead electricity and natural gas cost.

Subject to

- Day-ahead operating constraints of electricity and natural gas systems.
- Wind power is constrained by its expected value.

Stochastic – Integrated

Minimize

Day-ahead electricity and natural gas cost + expected electricity and natural gas balancing cost.

Subject to

- Day-ahead operating constraints of electricity and natural gas systems.
- Real-time operating constraints of electricity and natural gas systems.
- Wind power uncertainty is characterized by wind power scenarios.

The following model represents real-time operation. It is solved for a specific realization of wind power production.

Balancing

Minimize

Balancing electricity and natural gas cost.

Max Electricity Load	280 MW	Max NG Load	192 km ³
----------------------	--------	-------------	---------------------

Table 1: Technical and economic data of generating units, natural gas suppliersand natural gas storage unit.

Solution procedure

- Day-ahead dispatch of power and natural gas systems is determined. Models Conv-Dec, Conv-Int and Stoch-Int are solved and 10 wind power scenarios are given as input.
- In Conv-Dec, we introduce parameter k that helps us define the electricity marginal cost of GFPPs (C=k-LMP_{gas}·η). The LMP_{gas} is determined from Conv-Int model.
- 3) Given the day-ahead dispatch from (1), **balancing** model is evaluated for 30 different wind power realizations to determine the total operating cost.

Optimization model	Total cost (\$)	Relative to Stoch-Int (%)
Stoch-Int	558 726	-
Conv-Int	588 836	5.38
Conv-Dec (k=1)	588 836	5.38
Conv-Dec (k=1.1)	589 292	5.47
Conv-Dec (k=0.9)	591 815	5.92

Table 2: Total operating cost.

Conclusions and Future Plans

Stochastic market clearing

Co-optimization of two trading floors:

- Day-ahead dispatch is determined by co-optimizing day-ahead and real-time dispatch, where wind power uncertainty is probabilistically described.
- 2) A balancing market is cleared for real-time operation.

GFPPs: Gas-fired power plants NG: Natural gas LMP: Locational marginal price

Subject to

- Real-time operating constraints of electricity and natural gas systems.
- Wind power production is considered known.

Model details

- 1) The optimization models recast as MILP problems.
- 2) Balancing actions are provided only by GFPPs.
- 3) Power flow is modelled by DC approximation.
- 4) A Taylor series expansion is used to linearize the constraints related to the natural gas network.
- 5) A dynamic gas system with line pack is considered.

- Integrating the operation of power and natural gas systems under stochastic market clearing results in a significant reduction of daily operating cost.
- The case of k=1 reflects the case when GFPPs have perfectly foreseen the ideal natural gas price (i.e., the one stemming from Conv-Int model).
- It is noticed that the total operating cost further increases in the cases of k≠1.
- In future work, the introduction of CHP plants to cover heat demand will be examined, as well as power-togas technology.

Acknowledgements

This research was funded by the CITIES project, Grant No. DSF 1305-00027B.

Contact: Christos Ordoudis, PhD student, Email: chror@elektro.dtu.dk

Centre for Electric Power and Energy (CEE) • Department of Electrical Engineering, Technical University of Denmark, Elektrovej 325, DK-2800 Kgs. Lyngby • www.cee.elektro.dtu.dk • (+45) 45 25 35 00