Smart integration of future domestic heaters in energy systems with high shares of variable renewables

An investment model assessment

Steve Heinen (<u>Steve.Heinen@ucd.ie</u>)

St Patrick's Day 2016

University of Auckland

Energy Centre Research Symposium

SETTING THE SCENE Residential heating and system integration

European heat decarbonisation strategy in the residential sector, simplified...

1. Decarbonise supply

2. Insulate

3. Electrify using efficient HPs

Heat demand in the UK, 2010

Heat pump efficiency

Underperformance during cold temperature spells? Low-temp heat distribution system?

Source: Munuera et al. (2013), The role of energy efficiency in decarbonising heat via electrification

Heat pump investment cost

Are consumers rational enough <u>and</u> have access to finance to invest a high upfront sum that delivers long-term savings?

Source: Energinet, COWI

6

Planning and operations is a dynamic process in an integrated energy system

Hybrid gas boiler - heat pump

An example of a outdoor dual fuel split unit installation matched with a cased coil

Hybrid heaters are available commercially since about 2010

Hybrid heaters an overlooked alternative?

a. Hybrid B-R

b. Hybrid HP-B

c. Hybrid HP-R

Hybrid heaters are composed of 2 appliances

Different combinations feasible

- Gas boiler resistance heater (HP-R)
- Heat pump Gas boiler (B-HP)
- Heat pump resistance heater (HP-R)

Enabled by ICT, hybrids can switch between those appliances during operation depending on market conditions.

→ Can hybrid heating deploying provide system-wide planning benefits?

ENERGY

INVESTMENT PLANNING ANALYSIS Research framework and methods

Research target

12

- Quantify the <u>planning</u> and <u>operational</u> cost of deploying different residential heating systems for the <u>integrated</u> power-heat system
- In particular, relative to business-as-usual i.e. gas boiler for heat
- Target audience
 - Policymaker and regulator
 - Utilities
 - Technology manufactures and smart aggregators

Power-gas-heat system

What is the cheapest way to build and operate this system?

Power-gas-heat system

Model formulation and test system

- Linear one stage planning/capacity expansion
- Hourly resolution for full year
- Objective Function:

min{ TotalCost }

min{Inv(Heat+Power) + Fuel(Heat+Power) + CO₂(Heat+Power)}

Heat includes heater and (optional) thermal storage

Main constraints

- Energy and capacity balance for generators, heaters and storages
- Adequacy constraint
- Wind penetration based on SNSP (0.75)

Test System

- Ireland 2030 with 6000 MW wind (40% energy)
- Heaters installed in 25% of Irish households

Heat load for 25% of Irish households compared to TOTAL elec. load

Source: Eirgrid (2014), CER (2011)

INVESTMENT PLANNING ANALYSIS Results

Economic assessment – cost breakdown

Compared to gas boiler deployment

Consumer side

19

ENERGY INSTITUTE UCD

Wind curtailment

20

Electric loads increase flexibility and lower curtailment

HP-B operation during low wind week

ENERGY INSTITUTE UCD

Overall assessment

22

- Hybrid heaters can provide planning benefits by integrating gas, electricity and heat without district heating network, only through smart integration of individual technologies.
 - HP-B system
 - Least-cost system
 - Heater investment savings compared to HP (smaller HP)
 - Power investment (lower electric peak) and fuel savings (efficient HP)
 - Gas and CO₂ savings compared to gas boiler, small increase in gas and CO₂ emissions compared to HP
 - B-R system
 - Cheap, high return on investment
 - Reduced wind curtailment, but increased coal usage
 - HP-R system
 - Heater investment reduction compared to HP
 - Minor power system benefits

THE BIGGER PICTURE: ENERGY SYSTEMS INTEGRATION

What is energy systems integration?

- optimization of energy systems across all scales and across multiple pathways (electricity, gas, heat, and liquid fuels)
- increase reliability and performance, and minimise cost and environmental impacts
- most valuable at the interfaces where the coupling and interactions are strong and represent a challenge and an opportunity
- control variables are technical, economic and regulatory

Source: NREL, Energy Systems Integration – a convergence of ideas, 2012; IEA, Energy Technology Perspectives, 2014

Energy analysis across fuels, disciplines and timescales

Denmark – ESI leader

Last 20 years

Next 20 years

- Activities in 2015
 - Key Research Challenges of Energy Systems Integration, UK, March 2015
 - Energy Systems Integration courses, Boulder (CO, US) and Leuwen (Belgium)
 - ICT Enabling Thermal Energy Flexibility in Integrated Energy Systems, Korea, Oct 2015
- Activities in 2016
 - Energy Systems Integration Course May 16-20 in Dublin
 - Consumer Workshop (tbc), Stanford

www.iiesi.org

energyinstitute.ucd.ie

electricity research centre

erc.ucd.ie

Thank you for your attention Questions? Steve.Heinen@ucd.ie

Special thanks to my PhD supervisor **Prof Mark O'Malley**

Supported by

- Fonds National de la Recherche, Luxembourg (Project Ref. 6018454) ٠
- CITIES project, Denmark (Project Ref. 1305-00027B/DSF ٠

Fonds National de la Recherche Luxembourg

