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CONTEXT AND MOTIVATION




Heat, the sleeping giant
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Heat is a huge energy demand

Transport Industry Buildings

but often doesn’t show up as such in energ ENERGY
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European heat decarbonisation strategy.

In the residential sector, simplified...
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1. Decarbonise
supply

2. Insulate

3. Electrify using

efficient HPs
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Heat varianility: UK, 2010
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Source: Robert Sansom (Imperial College), Winter Peak Heat Demand



RESEARCH APPROACH




Electrifying heat in a system with high wind
penetration increases weather dependence

Weather
Wind
Temperature

SUPPLY DEMAND
Wind variability Heat variability
Electricity
System
Adequacy

The correlation between wind and temperature is very complex
AND low wind and low temp. can coincide and stress adequacy
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Coincidental weather patterns:

Wind and temperature
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[he building thermal inertia and pre-heating

~10 J
It takes time to heat up and cool down a building
- thermal building inertia
Heating

Occupant conform level set by thermostat must be met,
but electricity use can be decoupled

- Building is a thermal battery
- Can retain heat, depending on level of insulation

Flexibility to shift electricity demand if heat demand during
electric peaks or if excess wind is available
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Representing building as analogous

electric circuit

B
White Box Model State space representation:
Detailed physical model x(t) =A-x(t) +B-u(t)

Computationally prohibitive to integrate
into investment model

Black Box model

Statistical model

Does not capture physical behaviour

Te []l Cm Cewi CI Ciw
RC model or lumped parameter model *

Computationally efficient =

R ([K/W]) : thermal resistance to heat flow through a building material,

C ([J/K]): represent thermal storage or capacitance within a building construction
assembly. Here 4 main thermal capacitances (i.e. outer lead of external walls
(ewo), inner leaf of external walls (ewi), indoor air and furnishings (i), and internal

walls (iw))
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\Viethodology

Inputs Integrated planning model Outputs
Weather Electricity Test system
Ambient temp. Investment cost
Solar irradiation Qperational cost o I rela n d
Wind speed Capacity . .
Dispatch (¥ hour) * HOFIZOﬂ. 2030
Techno-

economic data
Elec. and heat

VarRE curtailment . Hou r|y resolution
CO, emissions
* 25% of res.

Fuel cost
CO, cost

Operational cost :>

4—%0-—
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ot building heat
Investment cost electrified
Operational cost

Capacity

Building charac. ‘

Dispatch (¥ hour)

Electricity
System

Heater operation
Fixed or flexible

CO, emissions

Occupant »Non-heat electricity demand (residential non-heat, ' Building
requirements L commercial and industrial demand) ' Temperature

Least-cost optimisation objective
|v“n(mVCPower + II"'VCHeat +OpCPower + OpCHeat )

Heat demand determined internally based on constraint @ ENERGY

) ) INSTITUTE
on indoor air temperature Uucb



Heat demand validation
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RC sub-model
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RC sub-model performance is validated against a detailed
thermodynamic ENERGY+ simulation
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RESULTS:
WEATHER IMPACTS




Net demand in test system with 40% wina

and 24% of residential heat electrified

Net electricity load (GW)
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The absolute peak
does not occur
during the coldest
hours
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Wind and weather impact on peak

demand

Pegk demand and tempera%re

Average ambient air temp.(°C)

20—
0.75 0.8 0.85 0.9 0.95 1
Normalised demand (/)

1

-

Percentage of hours with greater demand (%)

ECH B

0_5Peak

demand and wind

o
~

Average wind CF (/)
o
w

. 10

0.2 '
0.75 0.

i
8 0.85 0.9 0.95 1

Normalised demand (/)

Percentage of hours with greater demand (%)

@

ENERGY
INSTITUTE
UucCD



[otal cost sensitivity to weather years

Increases
A

Total, investment (inv) and operational (Fuel + 002) cost

4

I B
sl — |
x [ 1HP-ERH
)
w
c 2
i)
3
1 L
0 B
«5@} & N 7 P
& X
< € s\\)e} Qfo‘b
G .
¥ @

For 9 weather years considered, 15% between minimum and
maximum for gas boiler and 21% for HPs and HP-ERHs
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RESULTS:
BUILDING THERMAL INERTIA
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Investment benerits of flexible operation
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Conclusions

21 1
Weather

Coincidental weather impacts define net load peak and
adequacy (which drive infrastructure investments)

Weather impacts investment cost and reliability standard
that take this into account are required for cost —efficient
infrastructure design

Thermal inertia

Pre-heating decouples partially electricity demand and
heat demand without impacting occupant comforts

Reduces generation capacity investment needs and wind

curtailment (i.e. lowers operational cost)
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Thank you for your attention
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