

Smart Cities – ICT for low carbon solution

Per Sieverts Nielsen

Presented at:

De La Salle University Manado 20 March, 2018, Indonesia

DTU Management Engineering

Institut for Systemer, Produktion og Ledelse

Thanks to

- Angreine Kewo, LPDP (PhD student at DTU with LPDP scholarship)
- Centre to IT Intelligent Energy System, CITIES, which pays the cost me being here
- InnovationsFond Denmark (main funder of CITIES)

Table of content

- What will you be doing?
- Technical University of Denmark (DTU)
- Mega trends
- Definition of a smart city
- Danish power system, power consumption patterns, challenges
- Centre for IT Intelligent Energy Systems (CITIES)
- CITIES data platform
- The Danish Power hub
- European legislation on protection of person data
- IoT solution on air pollution monitoring
- Summary

What will you be doing?

Work in the IT department of a company?

Work in a software company?

Will you work in a company developing IoT solutions?

Work on Blockchain solutions? Robotics?

Data security? --- Hacker!!!???

Develop Selfdriving – autonomous vehicles? Machine learning

Develop Selfdriving – autonomous businesses? Machine learning

Work in the city/municipality/local government? Make smart cities?

Will you do a masters degree?

Will you stay in Manado?

University locations across the kingdom

- centered in the capital region

Organization

DTU Aqua DEPARTMENTS **DTU Bioengineering** DTU Bioinformatics **DTU Chemical Engineering DTU Chemistry DTU Civil Engineering DTU Compute DTU Electrical Engineering DTU Energy** DTU Environment DTU Food DTU Fotonik **DTU Management Engineering DTU Mechanical Engineering** DTU Nanotech **DTU Physics** DTU Space DTU Vet

DTU Wind Energy

D٦

BOARD OF GOVENORS EXECUTIVE **BOARD** OTHER UNIVERSITY Centre for Oil og Gas - DTU **ENTITIES** DTU Admission Course **DTU Biosustain** DTU Business DTU Cen DTU Danchip **DTU Diplom DTU Library** DTU Nutech

SUPPORT FUNCTIONS

AFFILIATED COMPANIES

Bioneer Ltd.
DFM Ltd.
Dianova Ltd.
Pre-Seed
Innovation Ltd.
Scion DTU Ltd.

40 TO 80
BILLION
connected objects
by 2020.

There will be as many as

40 to 80 BILLION

connected objects by 2020.

There will be

10 connected objects

for every man, woman, and child on the **PLANET**.

Through the power of smart devices, people will not only consume data, but contribute observed data to the IoT through their phones and tablets as

human sensors

http://visual.ly/future-internet-things

Five global mega trends shaping the future

Rapid urbanisation

Demographic and social change

Climate change and resource scarcity

Shift in global economic power

Technological breakthroughs

Expected increase in global food demand by 2030¹

We predict that seven of the world's biggest 12 economies in 2030 will come from emerging markets,

Years taken for telephone to reach half of US households; the smartphone in under ten³

The world's 85 richest people own as much wealth today as the poorest

3.5 billion°

In 2015 the size of the middle class in Asia Pacific is expected to overtake Europe and North America combined?

of global GDP is generated by the 300 largest metropolitan areas⁸

Around half of US jobs are at risk of being computerised over the next two decades⁹

AN AUTOMATIVE REVOLUTION IS COMING AND THE IMPACTS WILL BE HUGE.

DRIVERLESS CARS

FREE POWER

FREE ELECTRIC POWER

SET TO SHAKE UP THE STATUS QUO

Industries will need to adapt or fade away:

8

SOLAR CAPACITY **ABOUT TO EXPLODE**

FUEL DEMAND

<u>A</u> SUPERMARKETS CAR DEALERS

HERE BY

2020

DEALERSHIP

TECHNOLOGY WATCH

Battery Technology Rapidly Improving

Utilization of water increasing

CYBER CASH & MOBILE PAYMENTS

FINTECH

The new normal vields Incredible Fintech **Possibilities**

CLOUD

COMPUTING

Closed systems

Connections

getting integrated via Cloud

Shift in Decision Making to Business Units

IT MANAGER

LINE OF BUSINESS MANAGERS

THE INTERNET **OF THINGS** Smart City EVERYTHING IS CONNECTED Social Network Incredible Engineering Opportunities

Home

Definition of a smart city

"The Smart Energy City is highly energy and resource efficient, and is increasingly powered by renewable energy sources; it relies on integrated and resilient resource systems, as well as insight-driven and innovative approaches to strategic planning. The application of information, and communication technology are commonly a means to meet these objectives. The Smart Energy City, as a core to the concept of the Smart City, provides its users with a liveable, affordable, climate-friendly and engaging environment that supports the needs and interests of its users and is based on a sustainable economy."

What does it mean that we try to connect all aspects of Smart City?

Power flow systems in Manado

Electricity production (green) and electricity consumption (grey) over three weeks in Innovation Fund Denmark

From centralised to decentralised production

Centre for IT Intelligent Energy Systems - CITIES Scientific Objective

To establish methodologies and ICT solutions for design and operation of integrated electrical, thermal, fuel pathways at all scales.

Key Outcomes

- Modular forecasting and control models/tools for a variety of energy system components, including their interactions
- Market structures that support energy systems integration
- Operational methods and scenarios for energy systems integration and management, scenarios towards a fossil free future (Power and heating sectors fossil fuel free in year 2035)
- 2014-2019, 10 €Mio (Innovationfond Denmark 6 €Mio, 38 partners)
- 18 Demo Projects finished, ongoing and planned.
- 80 published papers
- Setting up an Innovation Centre
- www.smart-cities-centre.org

3Vs of Big Data

Open Data for Smart Cities: what are the benefits?

- Transparency
- Accountability
- Efficiency
- Public Service Delivery
- Engagement
- Data Improvement
- Societal value
- Economic value

DEVELOPERS

Overview of CITIESData Platform

Data security assurance

- Data anonymization (e.g., for sensitive data)
- Secured data management (VM-based environment/private ownCloud)

Data providers

- Quality assurance
 - Data cleansing quality checking
- Data fusion
 - Open data platform
 - Linked data

Components of CITIESData Platform

- Support for
 - Diverse data sources
 - Multiple processing systems
 - Different processing modules/algorithms

- Big data technologies, e.g., Spark/Hadoop/Hive
- Real-time and batch jobs

The Danish DataHub solution

From decentralized market management to centralized market management

Keywords: Digitization, unbundling, efficiency and transparency

From centralised to decentralised production

Upcoming European protection of personal data

Regulate the use and protection of personal data. Major changes:

- Elaborates the right of the registered
- Right to be forgotten
- Data portability: Take ALL your data from one social media to another.
- Stricter documentation requirements: Must be able to document the effort in securing data
- Greater fines: % of global sales

Intended to harmonize

- But approximately 50 areas where each country can make own legislation
- Still going to be complicated

- We as researchers need to become more aware of
 - Sensitivity of personal data
 - Data/IT security
 - Data responsibility when handed the data
- This conflicts with
 - The idea of Open data
 - Makes peer review harder as data cannot be shared

IoT sensors for monitoring air quality

SciCloud Service - Cloud-based data and analytics service

Cloud-based data management

Open data portal

In-place data analytics service

CTT: An IoT-based carbon track and trace system

A holistic IoT solution for air quality monitoring:

- Open source software and hardware platform
- Scalable IoT data management solution
- Real-time dashboard

Analytics and visualization

Model the correlation between traffic jam factor and CO2

Summary

You are ahead of the rest of the society with ideas which potentially can improve quality of life for its citizens.

You should remember to keep the big picture in mind in your systems development and remember where you are "right now" in this process.

Smart cities need smart people and smart stakeholders to work together. It will not happen by itself.

