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Introduction

Heat pumps
• Efficient for heating (and cooling) buildings

• Use electricity efficiently

• Ideal for an energy system with significant stochastic energy sources such as
wind and solar energy

Model Predictive Control (MPC)
• MPC has been suggested to control heat pumps.

• One can use direct control or control using prices. We investigate price based
control.

• Use the thermal inertia (mass) of buildings to store heat when the electricity
prices are low
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The building and the heat pump
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Building model

Energy balances

Cp,rṪr = Qfr −Qra + (1− p)φs

Cp,f Ṫf = Qwf −Qfr + pφs

Cp,wṪw = Qc −Qwf

Conductive heat transfer rates

Qra = (UA)ra(Tr − Ta)
Qfr = (UA)fr(Tf − Tr)
Qwf = (UA)wf (Tw − Tf )
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The heat pump - vapor compression cycle (VCC)

COP = h3(T3, P4)− h4(Tw + ∆T, P4)
h3(T3, P4)− h2(Tgr −∆T, P2)
Qc = ηe · COP ·Wc
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Nonlinear economic MPC

min
û

φ =
∫ tf

t0

(C(x̂(t), û(t), d̂(t)) + V (ŷ(t)))dt,

s.t. x̂(t0) = x̄k, k ≥ 0
˙̂x(t) = Ax̂(t) +Bû(t) + Ed̂(t), t ∈ [t0, tf ]
ŷ(t) = Cx̂(t), t ∈ [t0, tf ]
umin(t) ≤ û(t) ≤ umax(t), t ∈ [t0, tf ]
∆umin(t) ≤ ∆û(t) ≤ ∆umax(t), t ∈ [t0, tf ]
ymin(t)− v(t) ≤ ŷ(t), t ∈ [t0, tf ]
ymax(t) + v(t) ≥ ŷ(t), t ∈ [t0, tf ]
v(t) ≥ 0, t ∈ [t0, tf ]

Energy cost:
C(x̂(t), û(t), d̂(t)) = pel(t) ·Wc

Comfort penalty:

V (ŷ) = ρ(Tr − Tmin)min + ρ(Tr − Tmax)max
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Nonlinear economic MPC - results
Gaspar et al (2017):
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Control algorithm Wc Ctotal Wc,avg Cavg TVU TVT Crel
(kW h) (Euro) (kW h/month) Euro/month (W ) (K) (%)

Reference MPC 9.49 1.602 56.9 9.62 289.0 - -
Linear MPC, COP = 4.5 8.15 0.945 48.9 5.67 389.2 0.92 41.0
Linear MPC 7.84 0.976 47.0 5.86 455.9 0.95 39.0
Nonlinear MPC 7.60 0.943 45.6 5.66 452.5 0.69 41.2
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Heat pump model

Nonlinear model:

COP = h3(T3, P4)− h4(Tw + ∆T, P4)
h3(T3, P4)− h2(Tgr −∆T, P2)

Qc = ηe · COP ·Wc

Linear model with constant coefficient of performance, COP, and electrical
efficiency, ηe:

Qc = ηWc

where
η = ηe · COP
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Model

Energy balances

Cp,rṪr = Qfr −Qra + (1− p)φs

Cp,f Ṫf = Qwf −Qfr + pφs

Cp,wṪw = Qc −Qwf

Conductive heat transfer rates

Qra = (UA)ra(Tr − Ta)
Qfr = (UA)fr(Tf − Tr)
Qwf = (UA)wf (Tw − Tf )

Heat pump

Qc = ηWc
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Linear discrete time state space model

Linear model

xk+1 = Axk +Buk + Edk

yk = Cxk

States (x), manipulated variable (u), disturbances (d), and output (y):

x =

Tr

Tf

Tw

 u = Wc d =
[
Ta

φs

]
y = Tr
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Linear program - linear economic MPC

min φ

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1,
yk = Cxk, k = 1, . . . , N,
umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1,
∆umin ≤ ∆uk ≤ ∆umin, k = 0, 1, . . . , N − 1,

Soft constraints (k = 1, 2, . . . , N)
ymin,k − s1,k − s2,k ≤ yk, yk ≤ ymax,k + t1,k + t2,k,

0 ≤ s1,k ≤ s1,max, 0 ≤ t1,k ≤ t1,max,

0 ≤ s2,k ≤ ∞, 0 ≤ t2,k ≤ ∞.
Objective function

φ =

Energy cost︷ ︸︸ ︷
N−1∑
k=0

c′kuk +

Temperature violations︷ ︸︸ ︷
N∑

k=1
ρ′s1s1,k + ρ′s2s2,k + ρ′t1t1,k + ρ′t2t2,k
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Heat pump performance using Model Predictive Control

Heat pump using a standard approach vs. using a MPC over a 5 day period
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Heat pump performance using Model Predictive Control

Performance improval by using a MPC
As illustrated by the figures on the previous slide, the MPC is able to:

• Incorporate an upper limit on the input power of a portfolio of heat pumps

• Regulate the heat flow such that the indoor temperature is kept between an
upper and a lower limit

• React on the given electricity prices by only turning the pump on when the
electricity price is low

House 1 House 2
Price (Eur) - standard approach 0.68 1.41
Price (Eur) - MPC 0.35 0.95
Savings by using MPC 48.9% 32.8%

Table: Price saving over the 5 day period of the previous example using a MPC
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Heat pump for a good and a poorly insulated house
How the seasons affect performance of the heat pump of a good and a
poorly insulated house
In the following "House 1" refers to a good insulated house and "House 2" refers
to a poorly insulated house.
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Relation between the magnitude of the electricity prices and the penalty
for violating constraints

Importance of choosing the right penalty parameter
The lower soft constraint s1 for the indoor temperature y and the lower constraint ymin is
defined as

y ≥ ymin − s1, with 0 ≤ s1 ≤ ∞.

For the temperature to be as close as possible to the desired ymin there is a penalty ρ1
associated with this soft constraint. However, for heat pumps there is a relation between
this penalty parameter and the magnitude of the electricity prices.

With a prediction horizon of 2 days this relation is visible:
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How the prediction horizon contributes to an offset between the
temperature and the lower constraint

Prediction horizons
Investigations of different prediction horizons in open loop simulation:
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How the prediction horizon contributes to an offset between temperature
and constraint
Step responses
To understand why the predictions vary a lot for different horizon lengths, one can investigate the
step responses. These give an indicate of what amount of compressor input power of the heat
pump leads to the following increase in the indoor temperature.

As illustrated, the heating process requires an interval of more than 14 days to arrive at a steady
state.
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Reducing the offset between temperature and constraint

Increasing the prediction horizon length
Using a prediction horizon of 2 days compared to 14 days, the offset between temperature and
constraint is reduced:
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Choice of the right penalty parameter

Introducing another soft constraint
To avoid the search for a suited penalty parameter ρ1 one could consider to introduce
another soft constraint s2 associated with a penalty parameter of large magnitude
ρ2 = 1012:

y ≥ ymin − s1 − s2, with 0 ≤ s1 ≤ 0.75, 0 ≤ s2 ≤ ∞,

where the value 0.75 is called the borderline between these two soft constraints. Here the
borderline parameter can be used to enforce the temperature up or down.
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Conclusions

Observations
• Long control and prediction horizons necessary (N)

• Selection of the prices for soft constraints is non trivial

Recommendations
• Use tailored algorithms for MPC that scales well with the prediction horizon

• Use linear MPC with constant COP (surpricingly it seems that the benefits of
NMPC are marginal)

• Use several penalty levels for the soft constraints (or a quadratic penalty function
- it will however give a QP and not an LP)

Key future focus:
• Efficient algorithms to tackle challenging realistic problems that cannot be solved
by off-the-shelf optimization software
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