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Smart-Energy Operating-System

A system for controlling and operating
flexibility in electric energy systems

Henrik Madsen, DTU Compute
http://www.henrikmadsen.org
http://www.smart-cities-centre.org
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. balancing of the power system

25 % wind energy (West Denmark January EDDB){
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In 2008 wind power did cover the entire
demand of electricity in 200 hours

0 Wind power O Demand
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In 2015 more than 42 pct of electricity load
was covered by wind power.

For several days the wind power production was
more than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power
load was covered by wind power
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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems at all scales.

Einens

Geographical Scale

Complexity
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SE-OS History

© 2008 - DTU Compute and IES part of FlexPower
application

© 2010 - First complete simulation framework

©® 2012 - Part of iPower (DTU Compute, Enfor and
Grundfos)

© 2013/14 - Part of CITIES project (largest national project
on intelligent and integrated energy systems)

© 2014/15 - Price-based control in EcoGrid EU, but
oscilation due to sub-optimal control implementations

©2015/16 - Pilot B in H2020 SmartNet
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Smart-Energy OS e
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Direct and Indirect Control
For DC info about individual states and
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constraints are needed

Consumption T l Price

(a) Indirect control

DSmart
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(b) Direct control
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Control and Optimization
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in Future Electric Energy Systems, 2015
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Day Ahead:

Stoch. Programming based on eg. Scenarios

Cost: Related to the market (one or two
levels)

Direct Control:

Actuator: Power

Two-way communication

Models for DERs are needed

Constraints for the DERs (calls for state est.)
Contracts are complicated

Indirect Control:

Actuator: Price

Cost: E-MPC at low (DER) level, One-way
communication

Models for DERs are not needed

Simple 'contracts'
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Direct vs Indirect Control =

Level

Direct Control (DC)

Indirect Control (IC)
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Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct

control the optimization 1s globally solved at level I1I. Consequently the optimal control signals

u; are sent to all the ] DER units at level IV. (IC) In indirect control the optimization at level

[I1 computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs

optimize their own energy consumption taking into account p as the actual price of energy.

DSmart
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Models

I

Grey-box modelling are used to establish models and
methods for real-time operation of future electric energy
systems
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Grey-box modelling concept =

Deterministic

equations Prior

, Knowledge
Physical

knowledge

Detailed
submodels

White Grey Black

» Combines prior physical knowledge with information
In data

» Equations and parameters are physically interpretable
» Use of data from sensors, etc.
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Forecast requirements

Day Ahead:
— Forecasts of loads

— Forecast of Grid Capacity
(using eg. DLR)

— Forecasts of production
(eg. Wind and Solar)

Direct Control: .
— Forecasts of states of DERs
— Forecasts of load

Direct Control 3

DC
(DC) ﬁ-"‘#‘

Indirect Control
(c)

aggmw gated loads

=
(B

MET Forecasts Sub ﬁggregamr
Local Data - Folatast Baniee

(a)
Sub Aggregator

A ﬂv‘p’ ¢."¢M
\ — Forecasts of prices
& = I I:EI — Forecasts of load

Indirect Control:

Advanced
Controller
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SE-OS Characteristics

Bidding - clearing - activation at higher levels
Control principles at lower levels
Cloud based solution for forecasting and control

Facilitates energy systems integration (power,
gas, thermal, ...)

Allow for new players (specialized aggregators)
Simple setup for the communication
Simple (or no) contracts

Rather simple to implement

Harvest flexibility at all levels

¢ e ¢ ¢ ¢

¢ e ¢ ¢
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Case study (Level 1il)

Price-based Control of
Power Consumption
(Thermal flexible buildings)
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Data from

Olympic Pensinsula
project

27 houses during one year

Flexible appliances: HVAC,
cloth dryers and water boilers
5-min prices, 15-min
consumption

® Objective: limit max
consumption

¢

¢

DSmart

PNNL-BPA =
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Price responsivity

I

Flexibility is activated by adjusting the temperature reference

DSmart

(setpoint)

1

Temperature
setpaint
adjustment

Price sensitivity line
with skope k

Probability of mode

Standardized price

L 4

o 2 4 6 & 10 12 14 16 I8 20 22

Standardized price is the % of change from a price reference,
computed as a mean of past prices with exponentially decaying weights.

Occupancy mode contains a price sensitivity with its related comfort
boundaries. 3 different modes of the household are identified (work, home, night)
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Aggregation (over 20 houses) ==
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Consumption [kW]

DSmart

Price Step Change

0.2

w—)
]
:

Response on

I

—— Consumption step response (Olympic Pen.)
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Consumption
references
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Control of Power
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Control performance =

o

Considerable reduction in peak consumption
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Case study (Level 1V)

Control of Heat Pumps
(based on varying prices from Level lil)
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Grundfos Case Study

Schematic of the heating sv
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Modeling Heat Pump and Solar Collector
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Avanced Controller

Formulation

The Economic MPC problem, with the constraints and the model,
can be summarized into the following formal formulation:

N-1
f

{uw_}ﬁ@ kzzﬂc U (4a)
Subject to  xx11 = Axx + Buy + Edyk=0,1,...,N—1 (4b)
Yo = €3y, o— 12 00N (4c)

U 2 e iy k=0,1,....,N—1 (4d)
Bllnin € Ay < Dligisy k=0.1,...;,N—1 (4e)

Ymin < Yk < Ymax k=0,1,...,N (4f)
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E-MPC for heat pump with ELU

solar collector (savings 35 pct‘i‘
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Case study

i

(Direct Control and Bids for Markets)

Virtual Storage Related to
Super Market Cooling using
Thermal Demand Response
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Synergize: Virtual Storage using Thermal Demand Response
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Fig. 2: Simplified graphical representation of the display

case sy stem

The physical system
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(valve) data for an open medium temperature display
case in a supermarket in Funen, Denmark



The grey-box model
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Demand Response Controllers

* Direct Control
— Temperature Reference Tracking
N

2
min Z (T = T7")" + 11 APy,

n=1
s.t:
— System Temperature/Power Dynamics from ARMAX model

- Tmaxi Tminf Pmax

— Power Reference Tracking
N
2
minZ(Pn —pr)
n=1

* Indirect Control
— Economic MPC

min A By + VT + T

n=1

* Noteall controller formulations are “MPC” — i.e. forecasts of price/references only
available up to a fixed horizon — control consists of a sequence of receding horizon

oitimisations
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Flexibility Represented by

Saturation Curves
(for market integration using block bids)

I

N Response
I Rebound
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Power Adjustment [KW]
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Energy Flexibility
Some Demo Projects

Control of WWTP (Kruger, ED, ..)
Heat pumps (Grundfos, ENFOR, ..)
Supermarket cooling (Danfoss, Tl, ..)
Green Houses (NeoGrid, Danfoss, Fj.Fyn, WS

CHP (Dong Energy, FjernvarmeFyn, HOFOR, NEAS,
)

Industrial production (DI, ...)
® EV (charging) (ED, Charge-ME, ...)

¢ ¢ e ¢ ¢

¢
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Summary

® A Smart-Energy OS for implementing flexibility in electric
energy systems has been described

® Built on: Big Data Analytics, Cyber Physical systems,
Stochastic opt./control, Forecasting, loT, loS, Cloud
computing, ...

® Modelling: Toolbox - CTSM-R - for combined physical and
statistical modelling (grey-box modelling)

® Control: Toolbox - MPC-R - for Model Predictive Control
Simulation: Framework for simulating flexible power systems.

¢

® Two models for operating flexibility have been suggested
and demonstrated:

®© Dynamic models (used for E-MPC based on prices /
indirect control)

© Saturation curves (used for market bidding / direct
control)
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For more information ...

See for instance
www.henrikmadsen.org

...0r contact
— Henrik Madsen (DTU Compute)
hmad@dtu.dk

Acknowledgement to all my Master, PhD and PD
Students + SMARTNET (EU-H2020-project)
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