Optimal Operation Strategy of Cogeneration System with Auxiliary Heat Facilities under Electricity Market Environments

(CITIES Fourth General Consortium Meeting, Aarhus, Denmark)

May 31, 2017.

Konkuk University (Prof. Jong-Bae PARK & Jae-Hyung Roh)

Outlines

- <u>Optimal operational strategy determination</u> to maximize the profit of a district heating company with CHP, PLB, and thermal storage
- Each operational mode of CCGT-based CHP is defined and modeled mathematically
- <u>Optimal operating points of CHP</u> are determined under (Korean) electricity market rules and other environments such as thermal load, fuel prices, heat price, etc.
- <u>Thermal storage and peak load boiler (PLB)</u> are considered when determining the thermal/electrical output of CHPs
- **Operation software is developed for practical applications**

Cogeneration System Optimization Process (1)

- Day/Week-ahead Hourly Heat and Electricity Demand Forecasting
- Day-ahead Power Market Forecasting & Analysis
- Electricity Prices, CHP Outputs (Unconstrained and Constrained Output)
- CCGT CHP, PLB and Thermal Storage Optimization

- Electricity Profit
- Heat Profit
- Electrical/Thermal output of CHP considering heat storage and PLB

Cogeneration System Optimization Process (2)

LNG CCGT-based Cogeneration System (1)

COPYRIGHT KUPOSYS. ALL RIGHT RESERVED. KUPOSYS

LNG CCGT-based Cogeneration System (2)

Gas turbine(s) + HRSG + High/Low pressure steam turbine(s)

- CCGT CHP with various operational modes and characteristics
- High efficiency can be maintained by separating steam turbine

Multiple District Heaters

- Increasing electrical output by optimizing extraction pressure
- Temperature of district heating water : 65°C/ 90°C/ 115°C

Optimize Seasonal Operation Mode

- Optimize heat/power efficiency by not-operating at low pressure turbine and condenser during high thermal load season
- Optimize heat/power efficiency by operating at low pressure turbine and condenser during low thermal load season

Operation Modes of CCGT-CHP System (1)

MODE I : Heat-generation mode (winter)

- Operation facilities: gas turbine, HRSG, high pressure steam turbine, district heater
- Not operating facilities: Low pressure steam turbine, condenser

MODE **II** : Gas turbine operation mode (uncommon operation)

- Operating facilities: gas turbine (electricity only, no thermal output)
- Not operating facilities: HRSG, high/low pressure steam turbine, condenser, district heater

MODE III : Electricity-generation mode (summer)

- Operating facilities: gas turbine, HRSG, high/low pressure steam turbine, condenser
- Not operating facilities: district heater
- CCGT operation only for electricity generation

MODE IV : Maximum Heat Following Mode (High Heat Demand)

- Operating facilities: gas turbine, HRSG, district heater
- Not operating facilities: high/low pressure steam turbine, condenser
- Uses all heat recovery to supply thermal load (not electricity)

MODE V : Mixed-match mode (spring/fall, Low Heat Demand)

• Operating facilities: gas turbine, HRSG, high/low pressure steam turbine, district heater

Operation Modes of CCGT-CHP System (2)

Open (fully)

Closed

LΡ

Open (partial)

LΡ

LΡ

Operation Modes of CCGT-CHP System (3)

Operation Zone in Each Mode

Operation Modes of CCGT-CHP System (4)

Mode Physical Characteristics

Mathematical Formulation (1)

$$\sum_{i=1,j=1}^{N}\sum_{t=1}^{M}\sum_{t=1}^{T}H_{i,j,t} + H_{t}^{\textit{PLB}} + H_{t}^{\textit{D}} - H_{t}^{\textit{C}} \geq \textit{HL}_{t}$$

Generator Output Constraints

$$P_{i,j,\min} \times U_{i,j,t} \le MGO_{i,j,t} \le P_{i,j,\max} \times U_{i,j,t}$$

Mathematical Formulation (2)

Operational Modes of CHP

$$H_{i,j,t} = \alpha_1 \times MGO_{i,j,t} + \beta_1 \times U_{i,j,t}$$

$$H_{i,j,t} \ge \alpha_{2,1} \times MGO_{i,j,t} + \beta_{2,1} \times U_{i,j,t}$$

$$H_{i,j,t} \le \alpha_{2,2} \times MGO_{i,j,t} + \beta_{2,2} \times U_{i,j,t}$$

$$H_{i,j,t} \le \alpha_{2,3} \times MGO_{i,j,t} + \beta_{2,3} \times U_{i,j,t}$$

$$H_{i,j,t} \ge 0$$

Mathematical Formulation (3)

[Minimum Mode Change Time, MMCT]

$$\sum_{t=1}^{G_{i,j}} \left[1 - U_{i,j,t} \right] = 0$$

$$\begin{split} &\sum_{k=t}^{t+UT_{j}-1} U_{i,j,k} \geq MMCT_{i,j} \big[\ U_{i,j,t} - U_{i,j,t-1} \big] \\ &(t = G_{i,j} + 1, \ \cdots, \ T - UT_{i,j} + 1) \end{split}$$

$$\sum_{k=t}^{T} \{ U_{i,j,k} - (U_{i,j,t} - U_{i,j,t-1}) \} \ge 0$$
$$(t = T - UT_{i,j} + 2, \dots, T)$$

Mathematical Formulation (4)

Charging, Discharging Limits of Thermal Storage

$$0 \le H^{C}{}_{t} \le H^{C}{}_{max} \times U^{C}{}_{t}$$
$$0 \le H^{D}{}_{t} \le H^{D}{}_{max} \times U^{D}{}_{t}$$

Charging, Discharging State Variables

 $U^{C}{}_{t}+U^{D}{}_{t}\leq 1$

Storage Thermal Limits

$$ACC_t = H^C_{t} - H^D_{t} + ACC_{t-1}$$

 $0 \leq ACC_t \leq ACC_{max}$

Numerical Studies for Sample System (1)

CHP Input Data

mo	des	Power [MW]	Heat [Gcal/h]	Fuel [Ton/h]		
	100%	338.06	199.56	54.83		
	90%	351.31	179.47	50.33		
Mode I : : :	:	:				
	40%	188.25	90.26	29.45		
	30%	165.01	77.13	26.40		
	100%	431.18	180.80	58.95		
	90%	390.34	163.15	54.12		
Mode V	:	:	:	:		
	40%	209.17	82.05	31.67		
	30%	183.34	70.12	28.38		
	100%	485.89	-	58.95		
Mode III	90%	439.80	-	54.12		
	:	:	_	:		
	40%	233.14	-	31.67		
	30%	COP203.49KUPC	SYS. ALL <u>R</u> IGHT RE			

Numerical Studies for Sample System (2)

Hourly Heat Demand

Min 78 [Gcal], Max 223 [Gcal] (24 Hrs Heat Demand 3,447 [Gcal])

Heat Sales

	Residential	Commercial	Public	Average
Heat Price [KRW/Gcal]	63,070	81,900	71,520	72,163

Numerical Studies for Sample System (3)

Day-ahead Electricity Market Forecasting

Numerical Studies for Sample System (4)

Comparisons of Results

- HS Capacity 2000Gcal, Houly Max C/D: 200Gcal/h, MMCT : 3Hrs,
- Heat Storage MUT/MDT : 10Hrs
- Case 1 : without HS, Case 2 : with HS (CHP, PLB, HS) without considering HS technical Constraints, Case 3 : Considering all resources and constraints

			Case 1	Case 2	Case 3		
Revenue [MKRW]		SEP	804.70	804.10	804.70		
	Electricity Sales	GSCON	542.92	361.30	393.31		
	Electricity sales	SCON	0	0	0		
		COFF	0	0	0		
	Heat	Sales	248.74	248.74	248.74		
	Total R	evenue	1,596.35	1,414.13	1,446.74		
Cost [MKRW]	CH	IP	1,518.21	1,281.25	1,358.79		
	PL	B	19.48	4.53	19.48		
	Total	Cost	1,537.70	1,285.78	1,378.27		
Net Profit [MKRW]			58.65	128.35	68.47		

Numerical Studies for Sample System (5)

Example of Thermal Storage Effect

Numerical Studies for Sample System (6)

Example of Electricity Output of CHP

Development of Optimization System for Practical Applications (1)

Optimal Operation Analysis Program (Start)

) 평택에너지서비스 하나파워	Optimal Operation Analysis Program 열병합 발전소 최적 운영 분석 프로그램
	Private and Confidential 2017-05-22	
	IMPORTANT NOTICE AND DISCLAIMER	
The second	본 분석 프로그램은 하나파워 열병합 발전소의 장·단기 최적운영 각 분석 Factor들은 일정한 가정조건 및 전제, 제공데이터를 기념	병 도출을 위한 프로그램입니다. 반으로 최적화를 수행합니다.
	아래의 Start 버튼을 누르면 본 시트로 이동하게 됩니다.	
	START	

Hana Power is a district heating company in Korea with 1 CHP, thermal storage, and PLB.

Development of Optimization System for Practical Applications (2)

Optimal Operation Analysis Program (Main Page)

	A B	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	
1	Short-1	lerm A	Analys	is				l l	Go l	.ist									
2	Period	Period 2 Days Comprehensive Analysis							MEGW Analysis										
4	, chod	2 0 4 3 5	4	_	- comprehensive Analysis -						ACCATOLYSIS ACCATOLYSIS								Outrast
5	Day	Hour	• Temp	HeatLoad	MaxD(2)	apacity(Ne	t)	MD	Market	Fuel	RA	MEGW	GenP	CLID	HE	AT	Discipation	. 1	Output
Input	[d]•	[h]	[°C]	[Gcal]	[MW]	[MW]	[Gcal]	[원/kWh]	[MWh]	[원/Guel]	[MWh]	[MWh]	[MWh]	[Gcal]	[Gcal]	[Gcal]	[Gcal]		Data
Data		1 1	-5.0 ℃	15.60	857.00	780.85	330.00	92.66	855.00	52,809	857.00	242.37	847.02	43.23	0.00	27.63	0.00		
Data		2	-5.0 ℃	14.75	857.00	780.85	330.00	90.11	771.00	52,809	857.00	242.37	802.56	235.75	0.00	221.00	0.00		
10		3	-5.0 ℃	13.73	857.00	780.85	330.00	90.00	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	13.73	•	
11	-	4	-5.0 °C	12.55	857.00	780.85	330.00	86.17	0.00	52,809	- 857.00	242.37	0.00	0.00	0.00	0.00	12.55	1	
12		2	-5.0 %	12.15	857.00	780.85	330.00	86.17	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	12.13	•	
10		7	-5.0 °C	12.49	857.00	780.85	330.00	86.22	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	12.49	•	
14		8	-20°C	13.62	857.00	780.85	330.00	86.00	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	13.62	1	
16		9	-2.0 ℃	15.97	857.00	780.85	330.00	85.81	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	15.97	÷.,	
17	-	10	-2.0 ℃	16.75	857.00	780.85	330.00	49.67	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	16.75	1	
18		11	-2.0 ℃	16.19	857.00	780.85	330.00	59.23	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	16.19		
19		12	1.0 ℃	14.61	852.73	776.58	330.00	59.30	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	14.61		
20	-	13	1.0 ℃	12.06	852.73	776.58	330.00	49.67	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	12.06		
21		14	1.0 ℃	11.14	852.73	776.58	330.00	49.62	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	11.14		
22	-	15	1.0 ℃	10.78	852.73	776.58	330.00	49.67	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	10.78	•	
23	-	16	1.0 ℃	10.98	852.73	776.58	330.00	59.75	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	10.98	1	
24		17	1.0 ℃	12.60	852.73	776.58	330.00	86.00	0.00	52,809	852.73	242.37	0.00	0.00	0.00	0.00	12.60		
25		18	-2.0 ℃	14.67	857.00	780.85	330.00	85.88	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	14.67	•	
26		19	-2.0 °C	16.49	857.00	780.85	330.00	86.77	846.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	16.49	1	
27		20	-2.0 °C	12.90	857.00	780.85	330.00	80.//	840.00	52,809	857.00	242.37	852.85	17.90	0.00	0.00	18.02		
20	-	21	-5.0 °C	18.92	857.00	780.85	330.00	88.92	771.00	52,809	857.00	242.37	839.76	74.67	0.00	56.43	0.00	1	
30		23	-5.0 °C	17.56	857.00	780.85	330.00	89.20	846.00	52,809	857.00	242.37	852.95	17.56	0.00	0.00	0.00		
31		24	-5.0 ℃	16.40	857.00	780.85	330.00	89.20	846.00	52,809	857.00	242.37	853.21	16.40	0.00	0.00	0.00		
32		2 1	-5.0 ℃	13.83	857.00	780.85	330.00	87.32	744.00	52,809	857.00	242.37	802.78	234.83	0.00	221.00	0.00		
33		2	-5.0 ℃	12.50	857.00	780.85	330.00	87.32	686.00	52,809	857.00	242.37	854.11	12.50	0.00	0.00	0.00	•	
34	-	3	-5.0 ℃	11.02	857.00	780.85	330.00	87.32	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	11.02	•	
35	-	4	-5.0 ℃	10.91	857.00	780.85	330.00	85.53	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	10.91	1	
36		5	-5.0 ℃	10.66	857.00	780.85	330.00	87.32	0.00	52,809	857.00	242.37	0.00	0.00	0.00	0.00	10.66	•	
37		6	-5.0 °C	11.77	857.00	780.85	330.00	87.32	849.00	52,809	857.00	242.37	854.28	11.77	0.00	0.00	0.00	•	
38		7	-5.0 ℃	14.32	857.00	780.85	330.00	87.32	686.00	52,809	857.00	242.37	853.69	14.32	0.00	0.00	0.00	1	
39		8	-2.0 °C	16.55	857.00	780.85	330.00	89.84	849.00	52,809	857.00	242.37	857.00	0.00	0.00	0.00	16.55	2	
40		9	-2.0 ℃	15.89	857.00	780.85	330.00	92.90	844.00	52,809	857.00	242.37	857.00	0.00	0.00	0.00	15.89		
41	1	10	-2.0 °C	15.15	857.00	780.85	330.00	92.90	844.00	52,809	857.00	242.37	857.00	0.00	0.00	0.00	15.15		
42		11	-2.0 °C	14.05	852.72	776.50	330.00	92.90	844.00	52,8097	852	242.37	857.00	0.00	0.00	0.00	14.05		
14 4 >	🕨 🛛 Title 🖉 List	성능발(전단/성동	등_송전단	/연료단기	SMP	에너지수	요/기타	설정 Sh	ort-Term .	Analysis		GW ZCA		CALLACC	Part2	CAL_RA 🌽	회산 🖊	L. C.

- MILP & Excel Based System with Simple and Robust Solution Capability

Development of Optimization System for Practical Applications (3)

Real Optimization Results (Winter)

Development of Optimization System for Practical Applications (4)

Real Optimization Results (Summer)

Conclusions

Optimizer Development and Analysis

- System configuration with 1 CCGT-based CHP(3/5 modes), 1 PLB, 1 thermal storage. Heat demand and electricity market forecasting capability.
- Considering physical constraints of CHP and HS. Implementation in Excel Environment (MILP)

Future works

- Configuration expansion for heat network interconnection consideration between district heating companies. ESS(Electrical Energy Storage System) consideration for electricity storage and optimization.
- Experience sharing and collaboration with Danish district optimization system.
- Journal Paper(s) / Software Improvement for practical applications

