Model Predictive Control for Energy Systems Management Optimization of Heat and Power Systems

Emil Sokoler DONG Energy / DTU Compute

Kgs. Lyngby, Denmark. January 2015

Industrial Ph.D. Project

Project

Stochastic Model Predictive Control with Applications in Smart Energy Systems

Partners

Supervisors

- ohn B. Jørgensen, DTU Compute
- Niels K. Poulsen, DTU Compute
- lenrik Madsen, DTU Compute
- Kristian Edlund, DONG Energy
- Claus B. Hilger, DONG Energy

DNG

energy

DONG Energy

DONG Energy is an integrated energy company that procures, produces, distributes and trades energy products in Northern Europe.

- Headquartered in Denmark
- Mainly owned by the Danish state
- Around 6,500 employees
- DKK 73.1 billion (EUR 9.8 billion) in revenue in 2013

DONG Energy: Clean Energy Plan

Challenges

Power Production Planning

- Constraints: Power balance, reserves, production limits, ramp limits, storage limits
- Costs: Imbalances, fuel, maintenance

Hierarchical Control Structure

- Day-ahead planning: Main load distribution and on/off decisions
- Minutes-ahead planning: Corrections due to e.g. fluctuations in the renewable energy production

Example: Unit Commitment Problem

Minimize cost of operation, subject to production limits and power balance

controllable production + wind power production = demand

Prediction horizon is 6 hours and resolution is 5 minutes

Uni t	Marginal Cost	Startup Cost	Minimum Production	Maximum Production
1	10 Euro/MW	3000 Euro	4 MW	20 MW
2	15 Euro/MW	2000 Euro	2 MW	10 MW
3	25 Euro/MW	1000 Euro	1 MW	5 MW

Example: Forecast Data

Example: Unit Commitment Solution

Example: Dynamic Model

Thermal Power Plant Model

$$Z_j(s) = \frac{1}{(\tau_j s + 1)^3} U_j(s), \quad j \in \mathcal{M}$$

Validation

Portfolio Model

$$Z_T(s) = \sum_{j=1}^{\mathcal{M}} Z_j(s)$$

State-Space Form

 $x_{k+1} = Ax_k + Bu_k$ $z_{k+1} = Cx_{k+1}$

Input & Output

$$u_k = \begin{bmatrix} u_{1,k} \\ u_{2,k} \\ u_{3,k} \end{bmatrix}, \quad z_k = \begin{bmatrix} z_{1,k} \\ z_{2,k} \\ z_{3,k} \\ z_{T,k} \end{bmatrix}$$

- $u_{j,k}$: power production set-point
- $z_{j,k}$: power production
- $z_{T,k}$: total power production

DONG energy

Example: Economic MPC Optimization Problem

$$\begin{array}{ll} \underset{u,x,y,w}{\text{minimize}} & \phi = \sum_{k=0}^{N-1} p_k^T u_k + q_{k+1}^T \rho_{k+1} \\ \text{s.t.} & x_{k+1} = A x_k + B u_k, & k \in \mathcal{N} \\ & z_{k+1} = C x_{k+1}, & k \in \mathcal{N} \\ & u_k \leq u_k \leq \overline{u}_k, & k \in \mathcal{N} \\ & \underline{u}_k \leq \Delta u_k \leq \Delta \overline{u}_k, & k \in \mathcal{N} \\ & \underline{\Delta} \underline{u}_k \leq \Delta u_k \leq \Delta \overline{u}_k, & k \in \mathcal{N} \\ & \underline{z}_{k+1} - \rho_{k+1} \leq z_{k+1} \leq \overline{z}_{k+1} + \rho_{k+1}, & k \in \mathcal{N} \\ & \rho_{k+1} \geq 0, & k \in \mathcal{N} \end{array}$$

$$\mathcal{N} = 0, 1, \dots, N$$

- Minimize cost of operation, subject to production limits and power balance
- Prediction horizon is 5 minutes and resolution is 5 seconds
- Uses feedback and updated forecasts
- Accounts for accumulated disturbances that are not handled in the market

Closed Loop Simulation

Challenges

Efficient Solution of the Economic MPC optimization problem

- The time available for solving the Economic MPC optimization problem restricted to seconds
- A virtual power plant may consist of several thousands of units
- \neq > Efficient algorithms for Economic MPC is required

Formulation of the Economic MPC optimization problem

- The controlled system is stochastic due to the intermittent nature of renewable energy
- The performance of MPC depends on the quality of the model
- > Deterministic models may not be adequate in the proposed framework

Decomposition Methods for Economic MPC

Dantzig-Wolfe Decomposition

- Master Problem size increases
- Few iterations required
- High accuracy
- Warm-start capable
- Linear programming
- Alternating Direction Method of Multipliers (ADMM)
 - Master Problem size is constant
 - Many iterations required
 - Low accuracy
 - Warm-start capable
 - Convex programming
- Subproblems
 - Simple and highly structured
 - Solved using structure-exploiting interior point methods

DONG energy

Uncertainty

Output Variations

Mean-Variance Economic MPC

- Includes information on the uncertainty in the economic MPC optimization problem
- Two-stage stochastic programming problem
- Convex relaxation of the problem may be solved efficiently using ADMM

Linear Stochastic System

Linear Stochastic State-Space System					
$x_{k+1} = A$	$x_k + Bu_k + w_k,$	$k \in \mathcal{N}$			
$y_{k+1} = C$	$f_y x_{k+1} + v_{k+1},$	$k \in \mathcal{N}$			
$z_{k+1} = C$	$f_z x_{k+1},$	$k \in \mathcal{N}$			
where $\mathcal{N} = \{0, 1, \dots, N-1\}$	is the prediction forizorion		is the initial state		

Definitions

$x_k \in \mathbb{R}^{n_x}$	system state
----------------------------	--------------

- $u_k \in \mathbb{R}^{n_u}$: manipulable input
- $z_k \in \mathbb{R}^{n_z}$: controlled variable
- $y_k \in \mathbb{R}^{n_y}$: measured output
- $w_k \in \mathbb{R}^{n_x}$: process noise
- $v_k \in \mathbb{R}^{n_y}$: measurement noise

Vector notation $u = (u_0^T, u_1^T, u_2^T, ..., u_{N-1}^T)^T$

Mean-Variance Economic MPC

Mean-Variance Economic MPC (MV-EMPC)

Mean-Variance Economic MPC optimal control problem is defined as

```
\underset{u \in \mathcal{U}}{\text{minimize}} \quad \lambda E \left[ \psi_{\text{eco}}(u; \bar{x}_0, w) \right] + (1 - \lambda) V \left[ \psi_{\text{eco}}(u; \bar{x}_0, w) \right]
```

• $\lambda \in [0,1]$ is a risk-aversion parameter

Monte-Carlo Approximation

• $w^i = (w_1^i, w_2^i, \dots, w_{N-1}^i)^T$

is sampled from the distribution $\delta f = \{1, f , \dots, S\}$

Expected value estimate $\mu := \frac{1}{S} \sum_{i \in S} \psi_{\text{eco}}(u; \bar{x}_0, w^i)$ Variance estimate

$$s^{2} := \frac{1}{S-1} \sum_{i \in \mathcal{S}} \left(\psi_{\text{eco}}(u; \bar{x}_{0}, w^{i}) - \mu \right)^{2}$$

Output Distribution

Efficient Frontier

Conclusions

Economic MPC for Energy Systems Management

- Modern control method for optimization of energy systems
- Well suited for Microgrids and VPP technologies
- Preliminary simulations indicate cost reductions
- Introduces new modelling and optimization challenges

Current Work

- Economic MPC for real-time control in isolated power systems
- Concepts for combining unit commitment and Economic MPC
- Stochastic methods for integration of uncertainty

Thanks! Questions and Comments?

