

IEA SHC TASK 60 2018 - 2020

Jean-Christophe Hadorn OA

Industry workshop Lyngby – Oct 9 2019

What is IEA SHC ? iea-shc.org

- Task 62 Solar Energy in Industrial Water & Wastewater Management
- Task 61 Integrated Solutions for Daylighting and Electric Lighting
- Task 60 <u>Application of PVT Collectors and New Solutions in HVAC Systems</u>
- Task 59 <u>Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO2</u> <u>Emission (NZEB)</u>
- Task 58 Material and Component Development for Thermal Energy Storage
- Task 56 Building Integrated Solar Envelope Systems for HVAC and Lighting
- Task 55 <u>Towards the Integration of Large SHC Systems into District Heating and Cooling (DHC)</u> <u>Network</u>

What has been PVT in SHC ?2005-2010SHC Task 35

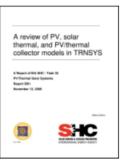
PV/Thermal Systems

The official participants in the Task are listed in the table below:

Country	Organization	Person
Canada	Dept. of Mechanical Engineering, University of	Mike Collins
	Waterloo, Waterloo, Ontario, Canada	
Denmark	Esbensen Consulting Engineers A/S	Henrik Sørensen
Deninark	Solar Energy Center, Danish Technological Institute	Ivan Katic
Israel	Millennium Electric	Ami Elazari
		Björn Karlsson
Sweden	Lund Technical University	Johan Nilsson
		Bengt Perers
		Wim van Helden
The Netherlands	ECN (Energy Research Centre of the Netherlands)	Herbert Zondag
		Marco Bakker

Project (Task) Publications

Deliverables Only | Advanced Search | Clear


Order by: Publication Date \$ Descending \$ Sort

The following are publications developed under Task 35:

A Review of PV Solar Thermal and Thermal Collector Models in TRNSYS

November 2009 - PDF 0.96MB - Posted: 2012-04-30 By: Mike Collins, University of Waterloo, Canada Document Number: DB1-A

This report assesses availability of PV and Solar Thermal system models. it is intended as a reference for those developing new models.

Recommended Standard for the Characterization and Monitoring of PV/Thermal Systems

November 2009 - PDF 0.92MB - Posted: 2012-04-30

By: Mike Collins, University of Waterloo, Canada and Herbert Zondag, ECN, Netherlands Document Number: DB-2

This report covers the proposed practice to characterize and monitor PV/Thermal systems, and identifies and addresses gaps that currently exist in characterization and monitoring activities. It details schemes for flat-plate style thermal collect but not PV/Thermal systems based on concentrating collectors.

By using PV/T collectors instead of side by side systems it is possible to reduce the collector area by 40%.

The liquid PV/T collector (PVTWIN 422 from PVTWINS of The Netherlands) tested at the Danish Technological Institute, Denmark IEA SHC Task 35 Subtask A DA 1-2 Outcome of PV/T market survey interviews

Interviews in Canada, Germany, Denmark, Sweden, Italy and Spain

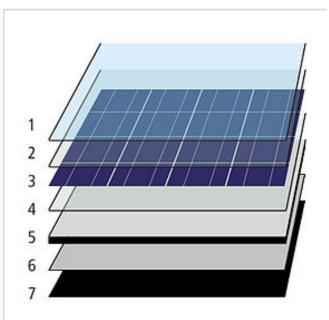
Compilation and analyze of interviews conducted October 2006 to May 2007 with "Architects, Engineers & building owners" and PV and thermal "Solar Dealers"

PVT systems Findings 2017 for 2018 - 2020

- Recognition of a potential market for PVT solutions not yet mature
- Clear Interests for a new Task from scientists
- Actors from industries on the move to capture a new market

 https://en.wikipedia.org/wiki/Photovoltaic_thermal_hybrid _solar_collector

Example of types on the market


www.endef.com, Spain

www.sunoyster.com, Germany

Some of the solar industries within Task 60

PVT collectors

Schematic of a hybrid (PVT) solar collector:

£

- 1 Anti-reflective glass
- 2 EVA-encapsulant
- 3 Solar PV cells
- 4 EVA-encapsulant
- 5 Backsheet (PVF)
- 6 Heat exchanger (copper)
- 7 Insulation (polyurethane)

- PVT liquid heating collector
- PVT air heating collector
- PVT Liquid /and air heating collector
- WISC (formaly known as glazed / unglazed)
- PVT concentrating collectors (CPVT)

PVT strength

Delivery of:

- Heat up to 170 C !
- Cold
- Electricity for all kind of usage

Millennium 1 megawatt green house done

Example CH

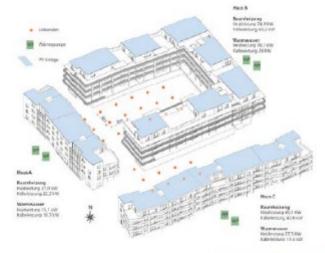
GS-Regeneration - P&D project Oberfeld

Object

3 MFH, 100 flats, 5345 m2 ERA (energy reference area)

Heating system

28 boreholes of 200 m Decentralized heat pumps 1300 m2 PVT collector area


Performance 1st year of operation

Thermal yield 330 kWh/m2 Electrical yield 163 kWh/m2 Degree of GS-regeneration 125 %

Monitoring

SPF Rapperswil

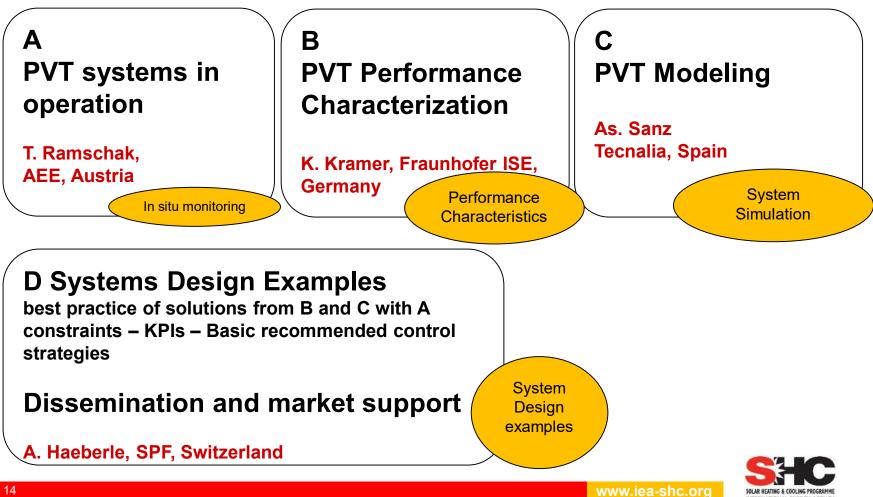
PVT advantage / Survey 1 - 20 experts May 2018

with PVT expe	erience	50%				
without PVT e	xperience	50%				
		n°				
What are t	he advantages of PVT?					
	area saving (space efficiency)	<mark>12</mark>				
	noiseless compared to air heat pump	2				
direct electricity supply PV efficiency improvement						
	sector coupling	1				
	downsizing of ground heat exchanger	1				
	HP COP improvement	1				
Albot ist th	$r_{\rm c}$ best employed on for $D/T_{\rm c}$					
what ist th	e best application for PVT?					
	combination with HP	<mark>13</mark>				
	ground heat exchangers	3				
swimming pool heating heating and hot water						
	component aktivation	1				
	high electricity need	1				

PVT replaces?						
	shallow geothermal	<mark>5</mark>				
	Air heat pump	4				
	ST + PV side by side	4				
	PV	2				
	solar thermal	2				
	fossile fuels	2				
	swimming pool ST collector	1				
	empty roof ;-)	1				

Problems and barriers?

Material research compared to PV
Legal approval of the PVT product
Interaction of installation companies
Funding not well knwon
-


And...testing? certification? cost?

Task Organisation

Operating Agent

JC Hadorn, Switzerland

NTERNATIONAL ENERGY AGENCY

Participation from:

- Australia Sunovate
- Austria ASIC FH Wels, AEE Intec, 3-F
- Canada Trigo energies
- Denmark DTU BYG, Ramboll
- France Univ Perpignan CESP, CEA INES, Dualsun, Systobvi, GSE
- Germany Fraunhofer ISE, Berlin HTW, ISFH, Univ Saarland, HTW Saar, Stutgart IGTE, ZAE Bayern, easy-tnt, Consolar, Sunoyster, PA-ID (2Power), Grammer
- Italy Politecno Milano , Uni Catania, Uni Bologna, Solink
- RSA Conver-TEK (CogenX solar)
- Spain Uni Zaragoza, Uni Lleida, Tecnalia, Endef, Abora
- Sweden Darlana, Univ. Gävle, BDR Thermea bv, Solarus AB
- Switzerland SPF, ZHAW, ETHZ LKE, Vela Solaris, ESSA, Hadorn, 3S solar ?
- NL SEAC-TNO, Eindhoven Univ, Solarus BV
- UK Naked energy, Solar Speedflex

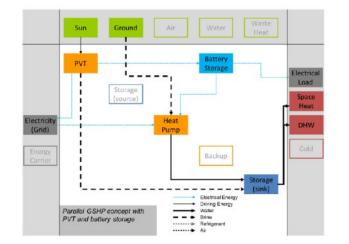
Observers from: USA (Univ Charlotte EPIC, Tyll solar), Macedonia (Camel Solar), Czech (Tech. Univ. Prag),

India (Solar Thermal Fed of India), Malaysia through Ireland EBC contact person , Israel Millenium, Greece Prime Laser technology,

Korea (Kongju Univ)

15

					/	/	/	//	
				/		<u> </u>		//	
			Tindu	in ,	X		\$/\$		
		/	1 Ind			Ň			
	/	18		X)	Ŕ	\$/{	2	$\langle \rangle$	\checkmark
	/		//	//	//	/	//	5/	
								[
Subtask A	Х					Х			R1. Report A1: Collection of data sheet on existing PVT systems and s
			х	Х					R2. Report A2A3: Comparison of systems with Subtask D with recomm
							Х		R3. Subtask report with management issues
Subtask B	Х	х			х				R1: Report B1B2B3: methods for testing PVT collectors (water, air, cor
	Х		x		Х	х			R2: Design Guidelines for PVT collectors and systems
				Τ			Х		R3: Subtask report with management issues
				Τ					
Subtask C	Х				х				R1: Report C1C2: Numerical Simulation Tools for the simulation of PV1
	Х			┢	x	\square			R2: PVT systems simulation and validation
	х			x					R3: Optimised PVT systems
				\top			х		R4: Subtask report with management issues
Subtask D	Х								R1: Report D1D2: performance assessment of PVT systems
	Х			x	х	F			R2: Report D3: Control strategies for PVT systems
	х			┢	х	x			R3: Report D4D5: Collection of documents prepared along the Task fc
				╈			x		R4: Subtask report with management issue
Operating Agent							x		RA 3 annual reports
						\square	x		R4 Final management report
	х	\square	x	x					R5 Presentation at conferences
	~		^	· _ ^					



PVT Systems

IEA SHC TASK 60 | PVT SYSTEMS

Visualization of energy flows in PVT systems

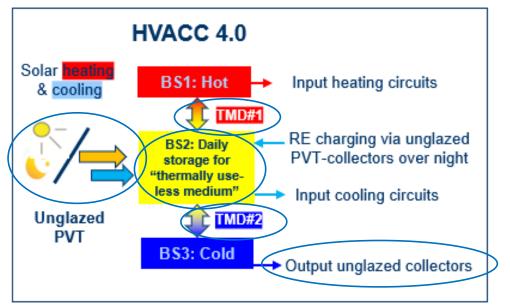
IEA SHC TASK 60 | PVT SYSTEMS Report D4

INTERNATIONAL ENERGY AGENCY

Status Quo of PVT Characterization

hc.org

Dr. Thomas Noll



HVACC4.0: System architecture 1/4

Storage concept

Main Features & Q7

- 1. Storage cascade with n ≤ 3 Buffer Storages (BS1, BS2, BS3) with disjunct T-profiles
- 2. BS2 designed as a Daily storage for "thermally useless medium"
 - * cold is harvested in summer via PVT during night
 - * heat is harvested in winter via PVT during day @ T>T_{brine}
- 3. Two Temperature Modification Devices (TMD) for adjusting the T-profiles in the storages for operation of the heating & cooling circuits
- 4. Specific thermal collector yield is maximized by sourcing in winter from BS3

Q3

 $\mathbf{O4}$

NTERNATIONAL ENERGY AGENCY

HVACC 4.0 Summaryand next steps

New system architectures in combination with new RE-sources like PVT-collectors or thermally activated Sheet Pile Systems are door openers to

- 1. Triple COP compared to air-water heat pumps
- 2. Boost EER from 2,5 (split devices) beyond 50 (night-time cooling via PVT)
- 3. Allow more sector coupling, because BS2 behaves like a virtual power storage when loaded

POWER

Exploration of new opportunities for combination of sheet piles systems with next generation district grids

PVThanks

