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The Danish Wind Power Case ==

.. balancing of the power system

25 % wind energy (West Denmark January EDDB){ 50 % wind energy
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In 2020 Forecasting and Flexibility are essential
In 2008 wind power did cover the entire

demand of electricity in 200 hours . .
(West DK) (For several days the wind power production is

more than 100 pct of the power load)

That'’s the topic of ‘Flexible Energy Denmark’
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The Danish Wind Power Case

Samlet dansk elproduktion
Maturgas a Olie » 50l eVand eVind » Forbrug

Energikilde o Affald @ Andet vedvarende e Biomasse eKul

5.000.000
4.000.000
Samlet forbrug
2020-07-02
89.464
3.000.000
= Vind
E 1 Enerpiype Hrodukton % al oroneg
- Vird 1321373 $3.22%
2.000.000
1.000.000
0
2019 2019 2019 2019 2019 2020 2020 2020 2020 2020 Maj 2020 Juni 2020 Juli 2020
August Septem... Oktober MNovem... Decem... Januar Februar  Marts April August
ENERGINET
Seneste |-1-_|'| seneste 30 dage Seneste 12 maneder
FLEXIBLE
ENERGY
DENMARK

PMAPS 2020

[
]
!> CITIES
Centre for IT Intelligent Energy Systems

=



= Innovation Fund Denmark

=
=]
—

I

Multivariate Point Forecasting

b CITIES FLEXIBLE
' ENERGY
/, Centre for IT Intelligent Energy Systems PMAPS 2020 DENMARK



= Innovation Fund Denmark

w—)

TU

I

Uncertainty and adaptivity

Errors in MET forecasts will end up in errors in wind power forecasts, but other factors lead
to a need for adaptation which however leads to some uncertainties.

The total system consisting of wind farms measured online, wind turbines not measured
online and meteorological forecasts will inevitably change over time as:

the population of wind turbines changes,

changes in unmodelled or insufficiently modelled characteristics (important
examples: roughness and dirty blades),

changes in the NWP models.

A wind power prediction system must be able to handle these time-variations in model and
system. An adequate forecasting system may use adaptive and recursive model estimation
to handle these issues.

Any reasonable wind and solar power forecasting tool will automatically calibrate
the model to the actual situation.
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Combined forecasting =

The example show results achieved for the
Tung Knob wind farms using combinations
of up to 3 power forecasts.

A number of power forecasts are
weighted together to form a new
improved power forecast.

7500
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These could come from parallel mims. 24 oc Chir02 loc AND.mS 24 loc

configurations of WPPT using NWP g 1

inputs from different MET s 8|

providers or they could come from § :

other power prediction providers. g

In addition to the improved perfor- g -

mance also the robustness of the sys- | | | |

tem is increased. ; 10 ' 2

Hours since 00Z
(DMI ) —(WPPT] Typically an improvement on 10-15 pct
in accuracy of the point prediction is

( DWD_}——»(WPPT)—(Comb )——( Final seen by including more than one MET

provider. Two or more MET providers
imply information about uncertainty
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Multivariate Forecasting using
Temporal Hierarchies
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Temporal hierarchy for quarterly series
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Optimal forecast reconciliation
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Given base forecasts ¥y € R", we want to find reconciled forecasts
y € R", which are coherent:

minimize  (y—9)" T 1 (7 - 9)
subject to y = SPy

o If ¥ € R were known, the solution would be given by the
generalized least-squares estimator

y=5 (st—ls)_l STyl
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Weighted least-squares estimation

w—)

TU

I

Athanasopoulos et al. (2017) proposed three estimators that approximate X:

Astruc — diag (4: 2, 2, 1} 1} 1? 1)
Nevar = diag (O‘i? Jﬁ, cra, Jé,, O‘é, J%, cr%)

Y 2 2 2 2 2 2 2
Apvar = diag (JA?JHla OH5,0Q:29Q,: 9Qs> JQ4)
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Autocovariance scaling

(from P. Nystrup et. al. DTU and LU, 2020)
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Estimate the full autocovariance matrix within each aggregation level:
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Markov scaling

(from P. Nystrup et. al. DTU and LU, 2020)
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Only requires estimation of first-order autocorrelation coefficients:

1 0 0 O
0 1 py O
0 py 1 O
ZI\flarkcw — A1/2 0 0 0 1
0 0 0 pq
2
0 0 O %
00 0 g3
-2 cce:ntlre-l;rl |§n§igent Energy Systems PMAPS 2020

o O O
o O O

DN

pPQ P

=0

pQ 1
R PQ

0
0
0

o
PQ P
PQ

1

FED

FLEXIBLE
ENERGY
DENMARK



% Innovation Fund Denmark . D'I'U
Example: Load Forecasting (SE1-SE4) =

=

Base forecasts from the additive double-seasonal Holt—Winters method
(Taylor 2012):

Yt = It—l"‘SE )pl-I—S( ) + per—1 + &t
er:yt—(lt 1—|—5§)p1—|—5() ) ﬂ
Ir = It—l + ey $
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Reconciled hourly forecasts (SE1-SE4)
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In sample (2016)

Out of sample (2017)

SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

|dentity —8™ —2 —8** —4* -1 2 -1 0
Structural —-10** —4* O  _B*F — 4" —1 -2 —1
Series variance —10** 4% 7 —4*F —4** —1 -2 —1
Hierarchy variance —-10** —4* —-10"* —8* —4>* —2 —6** —6"
Structural Markov —10** —-5* —13* —g** — 4" —1 —6** —4*
Series Markov —11* 5" —12* _8*F —b** —2 —6** —4
Hierarchy Markov =~ —11** 7" 23" _—17* —5* —5*  —17"" —13**
Autocovariance —14**  —10"* =26 —20** -7 =7 =20 —16™
Series GLASSO =27 =21* =27 27" —19** —18** —21** —23*F
Series shrinkage —26"* —22** 209" _20%F —-18" —19** 23" _25**
Cross-covariance —35* 33" —hh** —48** —23% 30" 47" —41*
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Probabilistic forecasting
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Some methods

© Quantile regression

© Stochastic differential equations

© Again - adaptivity, combined forecasting, multivariate, ....
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Quantile regression

A (additive) model for each quantile:

=
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Q(T) = a(7) + filz;7) + falme;7) + ... + fplzp: T)

Q(7) Quantile of forecast error from an existing system.
oF Variables which influence the quantiles, e.g. the wind direction.
a(T) Intercept to be estimated from data.

/i (+;7) Functions to be estimated from data.

Notes on quantile regression:

W Parameter estimates found by minimizing a dedicated func‘tuion of the

prediction errors.

W The variation of the uncertainty is (partly) explained by the independent

| variables.
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Example: Probabilistic forecast =
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! Notice how the confidence intervals varies ...

" But the correlation in forecasts errors is not described so far.
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Correlation based structure

@ It is important to model the interdependence structure of the prediction errors.
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' An example of interdependence covariance matrix:
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Correct and Naive Scenarios =
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Space-Time dependencies ...
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This is not enough...
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Space-Time Correlations =
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State-of-the-art
Probabilistic Forecasting
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SDEs for Forecasting =

The basic stochastic differential equation formulation:

t t
Xy = Xg—l—/ f(Xs:s)ds—b—/ g(Xs,s, )dWs,
0 0

We use the short-hand interpretation of this integral equation:

dXt = f(Xr, r)dr —+ g(Xt:, t)th
Yi = h(Xe,,tk, ex).

The predictive density, j(x, t), can be found by solving (with
g(er t) — \/2D(Xh t))

2
Sl t) =~ [0, 0]+ 5 [D0x. (0] (1
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~ Multi-Horizon Prob. Forecasting
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Predictive density of production in percent out of rated power for
the Klim wind farm:
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Solar Power Plant
» A solar power plant with a nominal output of 151 MW.
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» Measurements of 91 inverters every second for one year.
» We consider a cutout of 5 by 14 inverters for modeling.
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SPDE Model Performance

CRPSs

CRPSag
CRPSso
CRPS 10

nt Energy Systems

Auto-
Regressive

Model

0.00262
0.00982
0.023886
0.04883

PMAPS 2020
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Center Denmark

Green transition paved by green innovation
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Connect networks and data
fora green world

BERINERS
nationale Center

Fremme den grenne omstilling.
Samle og bygge bro, mellem
forskning, teknologi, natur og formidling,
pa tveers af interesseorganisationer,
virksomheder, skoler og
universiteter.
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Lessons Learned
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The forecasting models must be adaptive (in order to taken changes of dust on

blades, changes roughness, etc., into account).

Reliable estimates of the forecast accuracy is very important (check the reliability by
eg. reliability diagrams).

Reliable probabilistic forecasts are important to gain the full economical value.

Use more than a single MET provider for delivering the input to the prediction tool
— this improves the accuracy of wind power forecasts with 10-15 pct.

Estimates of the correlation in forecasts errors important.

Forecasts of ’cross dependencies’ between load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cost functions.

Probabilistic forecasts can provide answers for questions like
% What is the probability that a given storage is large enough for the next 5 hours?

™ What is the probability of an increase in wind power production of more that 50
pct of installed power over the next two hours?

™ What is the probability of a down-regulation due to wind power on more than x
GW within the next 4 hours.
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For more information ...

See for instance

www.smart-cities-centre.org

...0r contact
— Henrik Madsen (DTU Compute)
hmad@dtu.dk
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Some 'randomly picked'

Time Series
Analysis
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books on modeling and renewable integration ....

Trexts i Statistical Scienee

Introduction to
General and Generalized
Linear Models

Henirik
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mgrating
Renewables in

Electricity Markets

Oiperational Froblems
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