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> Short-term Electricity Markets

cTiEs (Basic structure)
4 ) 4 N
Day-ahead Balancing
market market
\_ J \_ J

I I Timei
Day d-1 Day d
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Short-term Electricity Markets
(Basic structure)
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Inflexible units
(need advance planning)
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Dealing with Uncertain Supply

(The need for flexibility)
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Dealing with Uncertain Supply

(The need for flexibility)
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Dealing with Uncertain Supply
(The need for flexibility)

4 N

Day-ahead
market

\_ - Balancing

Variability cost
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4 I Uncertainty cost
Day-ahead x
market
Balancing
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Dealing with Uncertain Supply

(The need for flexibility)
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Dealing with Uncertain Supply
(The need for flexibility)

Flexibility is a must!

HE
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Dealing with Uncertain Supply
(The need for flexibility)

Flexibility is a must!

HE



Dealing with Uncertain Supply
(Market mechanisms)

4 ) 4 )
Day-ahead Balancing

market market

A
\\"“.\:\_‘:i’?&;"a. /I‘ Il : "J_ / “. ﬂf’:)\?”
I \ | I 1 Time
Day d-1 Day d
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Dealing with Uncertain Supply
(Market mechanisms)

The design of the market conditions the value of system flexibility

D 4

=

Day-ahead Balancing Day-ahead Balancing
market market market market
Uncoordinated market (UM) Pre-emptive market (PM)
Inefficient management of system Perfect management of system
flexibility to cope with variability and flexibility to cope with variability and
uncertainty uncertainty
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Dealing with Uncertain Supply
(Market mechanisms)

Day-ahead market

Balancing market

Uncoordinated market (UM)
(DAM and BM are cleared
independently)

DTU Compute, Technical University of Denmark

Day-ahead market

Balancing prognosis

Balancing market

Pre-emptive market (PM)
(Day-ahead energy dispatch decisions
account for balancing operation)
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11 Dealing with Uncertain Supply

CITIES (Uncoordinated market)

~

-

Minimize C°(pg, py,)

pG,pW,(SO

s.t. hD(pG’ pw’50)_| =0
9°(ps,0°) <0

\ ’\L) Typically the (conditional) expected

o * production!
pG1pw,50
Minimize C®°(y,) )
yw.
St N(y,,,0,,8%) +W,,— py, =0
9°(y,,0,, Pa;W_)<0
- Y
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> Dealing with Uncertain Supply
CITIES (Example)
Total system demand = 170 MW G3 L2 (90 MW)
@ i * Unit capacity and offer cost in DAM
100 MW | Bus?
Bus 1

l @ @QWP High: (50 MW, 0.6)
L1 BOMW) Y =

Low: (10 MW, 0.4)

& &

Unit C c’ Cc®> R™ R™
G1 100 35 40 34 20 40
G2 110 30 — — 0 0

G3 50 10 — — 0 0

Powers in MW; costs in S/MWh

15 DTU Compute, Technical University of Denmark
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> Dealing with Uncertain Supply
CITIES
(Example)
Total system demand = 170 MW G3 L2 (90 MW)
@ i * Unit capacity and offer cost in DAM
100 MW ] Bus 2 » Offer limit and cost for the energy
Bus 1 sold in BM

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

Unt  P™ C c’ Cc®> R™ R™
G1 100 35 40 34 20 40
G2 110 30 — — 0 0

G3 50 10 — — 0 0

Powers in MW; costs in S/MWh

16 DTU Compute, Technical University of Denmark
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> Dealing with Uncertain Supply
CITIES
(Example)
Total system demand = 170 MW G3 L2 (90 MW)
@ i * Unit capacity and offer cost in DAM
100 MW ] Bus 2 » Offer limit and cost for the energy
Bus 1 sold in BM

l @ @ Q WP e Offer limit and cost for the energy
High: (50 MW, 0.6 i
L1 (80 MW) gh: ( ) repurchased in BM
G1 G2

Low: (10 MW, 0.4)

4 ’4

Unt  P™ C c’ Cc®> R™ R™
G1 100 35 40 34 20 40
G2 110 30 — — 0 0

G3 50 10 — — 0 0

Powers in MW; costs in S/MWh

17 DTU Compute, Technical University of Denmark



.2 pealing with Uncertain Supply

CITIES
(Example)
Total system demand = 170 MW G3 L2 (90 MW)
100 MW | Bus2
Bus 1

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

unit P™ C Y
Expensive, but flexible G1 100 35 40

G2 110 30 _

G3 50 10 _

Powers in MW; costs in S/MWh

18 DTU Compute, Technical University of Denmark
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.2 pealing with Uncertain Supply

CITIES
(Example)
Total system demand = 170 MW G3 L2 (90 MW)
100 MW | Bus2
Bus 1

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

Unit P™ C Cc?

G1 100 35 40
Less expensive, but inflexible G2 110 30 -

G3 50 10 -

Powers in MW; costs in S/MWh

19 DTU Compute, Technical University of Denmark
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.2 pealing with Uncertain Supply

CITIES
(Example)
Total system demand = 170 MW G3 L2 (90 MW)
100 MW | Bus2
Bus 1

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

Unit rP™ C CcY
G1 100 35 40
G2 110 30 —
G3 50 10 —

Cheap, but inflexible

Powers in MW; costs in S/MWh

20 DTU Compute, Technical University of Denmark
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> Dealing with Uncertain Supply

CITIES (Example)

Q@ 1

Total system demand = 170 MW G3

100 MW

Bus 1

Bus 2

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)
Unit P™ C
Gl 100 35
G2 110 30
G3 50 10

L2 (90 MW)

Wind power production modeled
using two scenarios

Expected production = 34 MW

40 34 20 40
- - 0 0
— - 0 0

Powers in MW; costs in S/MWh

21 DTU Compute, Technical University of Denmark
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Dealing with Uncertain Supply
(Uncoordinated market)

4 )

Minimize C°(pg, Py)

pGpw5

st h° (P pW’5O)_I =0
9°(ps,6°)<0

\ Pw <W J

Pe. Pw S

Minimize C®°(y,)
Yo
St h®(y,,0,,07) + W, — iy, =0
9°(y,,0,, Pa;W_)<0

~

J

DTU Compute, Technical University of Denmark

Min. 35pg, + 30pa, + 10pa,

60
£, —80 = ——2
S. Pcy +pG2 +pT/V 013
60
013"
Pcy g 100 y  PGa 5 110 y  Pas g 50 )
50
— 100 < — < 100,
0.13

pGlamepGS:PWEO:
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CITIES
/Minimize C°(pg, Pw) \
pe,pw,cSO
st. h®(pg, py,8°)—1=0
g°(ps,8°) <0
" Pw <W y
p;’ p\jv 150*
Minimize C®°(y,)
yw.
S.t. hB(yw'15w'15o*) +le _ p\;,v _0
\_

DTU

Dealing with Uncertain Supply =
(Pre-emptive market)

/ N\
Minimize CD(pG,pW)-’rEw[CB(yw)] !

pGipWyé‘O;yw,va)

st. h°(pg, py,0")—1=0
9°(ps,6°)<0
Py, <W
he(y,.6,,6°)+W, —p, =0, Vo

Balancing prognosis

\ gB(yw,5w, pG,Ww)SO, Yo J

lpé,p&;ﬁ"*

Minimize C®(y,.)

Yo

st. h®(y,,8,.,6°)+W_—p, =0

_/

23 DTU Compute, Technical University of Denmark
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* Two-stage stochastic programming
problem

 Expectation of the balancing costs: It

requires probabilistic forecasts

 Scenario-based modeling of uncertainty

* Good modeling = many scenarios =

increased dimensionality

24 DTU Compute, Technical University of Denmark

Dealing with Uncertain Supply
(Pre-emptive market)

Min. 35pc, + 30pe, + 10pe, + 0.6 (40rah — 3drg,, + 200 (I + [ghed) )

+0.4 (407’315 — 34, + 200 (Ihed + jsbed) )

s.t. Day-ahead dispatch equations +

pw < 50,
- she spi (50 - 52]1)
ré = Tan + 5t + 50 — py — WP I 20T
— She spi 50 - 521
Tal —Taut+ l]]f 4410 — pw — VV{D“ — %

[shed (520_—52h)

2h - 0.13 ?
lshed - _ (58 — 52!)
& 0.13 '

pey + g, <100, pe, 4+, <100,
pey =T =0, pey —rg, =0,

6 .
—100§0%g100, —100gﬁ§100,
ré, <20, rh <20,

Tih < 40, Ty < 40,
I/V;pi“ S 50 : I/VlSpi“ S 10 :
phed <80, 1shed <80, B <90, I <90,

+ T _ - spill spill jshed jshed jshed
Fawn Ty Tawn 2 Teu o Wh : I/Vl ) llh ’ lll ) lQh ’

?

5t >0,

DTU
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CITIES Example
Demand
Price
G1
G2 | i
G3 | §
170MWh Energy
Demand
Price
G1
G2 | i
G3 | §
S |
170MWh Energy
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Uncoordinated market (UM)

Unit p M C

G1 100 35
G2 110 30
G3 50 10
WP 34 0

Powers in MW, costs in S/MWh

Psch
0
86
50
34

Pre-emptive market (PM)

Unit p M C

Gl 100 35
G2 110 30
G3 50 10
WP 34 0

Powers in MW; costs in S/MWh

Psch
40
70
50
10



k4 Example
Total system demand = 170 MW G3 L2 (90 MW)
100 MW | Bus2
Bus 1

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

* The wind producer is dispatched only to 10 MW
* G1 is dispatched to 40, even though it is more expensive than G2
* The “traditional” cost merit-order principle does not hold in PM

* G1 is dispatched to exploit its ability to reduce production in real
time

26 DTU Compute, Technical University of Denmark

Uncoordinated market (UM)

Unit P™ C pee
Gl 100 35 0

G2 110 30 86
G3 50 10 50
WP 34 0 34

Powers in MW, costs in S/MWh

Pre-emptive market (PM)

Unit pP™ C pe
G1 100 35 40
G2 110 30 70
G3 50 10 50
WP 34 0 10

Powers in MW; costs in S/MWh
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Mln

407, — 34ry, +200 (L% + L3))

sp
Tm Tk L Wi 02

27

s.t. ], —
L3 = (62, — 05%) /0.13,
rh <20, 1, <40,

i, <100 = pg,, T, <0G
LY < 80; L} <90,
WP < 50,
—100 < O <100,
- 013~ 7

+ — sh sh sp
T T Lins Lops Wy, 20,

rin -+ Ly + 50 — pyy, — WP = —

(= 38) /013, &

Example

Min. 407, —

+ sh 1175P
’r‘ll Tll L V[l, .(Sgg

347y, + 200 (L3} + Ly)

st —
L3} = (0 — 05%) /0.13,

TH <20, r;; <40,

Scenario “low”

DTU Compute, Technical University of Denmark

Tll < 100 — pG’ 3 ﬂ' S p*Gla
> L3} < 80; Ly <90,
WP < 10,

Oy
—100 < —— < 100,
013~

+ - sh sh sp
T Tus thv L2lv m 20’

ry 4+ LS4+ 10 —pfy — WP = —

=
i
=

i

Scenario “high”

(6 — 69%) /0.13,
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CITIES Example =
Total system demand = 170 MW G3 L2 (90 MW) Uncoordinated market (UM)
100 MW ] Bus 2 G1 100 35 0
Bus 1
" G2 110 30 86
l @ @ Q WP ['High: (50 MW, 0.6) G3 50 10 50
L1 (80 MW)
Gl G2 WP 34 0 34

Low: (10 MW, 0.4)

Powers in MW, costs in S/MWh

Pre-emptive market (PM)

PM 3184 4000 816 0 (€200/MWh) Gq
G2 110 30 70
PM results in a more expensive day-ahead dispatch that G3 50 10 50
leads, however, to a much more efficient balancing operation
WP 34 0 10

28 DTU Compute, Technical University of Denmark Powers in MW; costs in S/MWh
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11 Dealing with Uncertain Supply =

CITIES .
(Pre-emptive market)

(w DN (o N
Minimize  C°(pg, py)+E,[C(v,)] | Minimize ~ C°(pg, py)+WC,[C8(y,)] |
Pe:Pw 0 1Y, VO Pe . Pw 0 1Yy V@

D 0 _ D 0y_ | —
st ho(ps, pw,07)-1=0 Expectation st h7(Pg, Py, 07)—1=0 Worst-case
9°(pg,6°) <0 9°(ps,8°) <0 scenario
Py W Py <W
h*(y,d,,6°)+W, ~p, =0, Vo h®(y,.3,,6°)+W, - p, =0, Vo
\ gB(ya)’5a)’pG’Wa))SO’ Vo J \ gB(ya)’éa)’pG’Wa))SO’ Vo J
N
l Ps, p\;,,é'o* Balancing prognosis l Ps, p\;,,é'o*
o o )
Minimize C~(y,) Minimize C~(y,)
Yo Yo
st. h®(y,,8,.,6")+W_ —p, =0 st. h®(y,,8,.,6")+W_ —p, =0
gB(yw"é‘ﬁ)" p:;’Ww') SO gB(ya)"é‘a)" p:;’Wa)') SO
N\ _J N\ _J

29 DTU Compute, Technical University of Denmark
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CITIES xa m p e
Total system demand = 170 MW G3 Uncoordinated market (UM)
L2 (90 MW)
@ ‘ Unit P™ C pee
100 MW Bus 2 G1 100 35 0
Bus 1
G2 110 30 86
l @ @ Q WP High: (50 MW, 0.6) G3 50 10 50
L1 (80 MW) Gl oo
Low: (10 MW, 0.4) A 0 34
Robust PM Powers in MW, costs in S/MWh
Unit p o pch Stochastic PM
G1 100 35 0 Unit  P™ psch
G2 110 30 110 G1 100 35 40
G3 50 10 50 G2 110 30 70
WP 34 0 10 G3 50 10 50
Powers in MW; costs in S/MWh WP 34 0 10

30 DTU Compute, Technical University of Denmark Powers in MW; costs in S/MWh
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CITIES Exa m ple

On average Scheduled production (MWHh)

UM 3720 3080

SPM - 4000 -816 0
RPM - 3800 0 0

In scenario low (worst-case)

3080

SPM 4000 4000 0 0

RPM - 3800 0 0

31 DTU Compute, Technical University of Denmark

G1 0 40 0

G2 86 70 110
G3 50 50 50
WP 34 10 10

In scenario high (best-case)

3080 3080

SPM - 4000 -1360 0
RPM - 3800 0 0
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Prices & Revenues

(I\/Iinimize C°(ps. Py) A

pG’pw:50

st h°(pg,py,0°)—-1=0:2"
9°(ps,0°)<0

L Y

Pe. Pw S

=~

\

S.t.

Minimize C®°(y,)
yw.

9°(y,,0,, Pa;W_)<0

h®(y,.8,,0")+W . —p, =0: 2>,

~

_/

32 DTU Compute, Technical University of Denmark
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S.t.

\_

/Minimize C°(pg, Py )+ EQ,[CB(YD

Pe . Pw 0°1Y, Vo

h°(pg, P, 6°)—1=0:27
9°(pg,8°) <0

Py <W

h®(y,,0,,0°)+W_—p, =0, Vo

gB(yw’§w’ pG’Wa))SO! Vo /




CITIES Example

Total system demand = 170 MW G3 L2 (90 MW)

@ $30/MWh
100 MW Bus 2

Bus 1 $30/MWh

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

In “Stochastic PM” unit G1 is dispatched day ahead in a loss-
making position

33 DTU Compute, Technical University of Denmark

Uncoordinated market (UM)

Unit P™ C

Gl 100 35
G2 110 30
G3 50 10
WP 34 0

Powers in MW, costs in S/MWh

Stochastic PM

Unit P C

Gl 100 35
G2 110 30
G3 50 10
WP 34 0

Powers in MW; costs in S/MWh

P.sch
0

86
50
34

Psch
40
70
50
10
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CITIES Example

Total system demand = 170 MW G3 L2 (90 MW)

@_ $30/MWh
100 MW Bus 2

Bus 1 $30/MWh

l @ @QWP High: (50 MW, 0.6)
L goMw) Y =2 =

Low: (10 MW, 0.4)

High Low

9)\Y) 1320 0 3300

Stoch PM 24 173.33

In “Stochastic PM” unit G1 incur losses if scenario “low”
happens

34 DTU Compute, Technical University of Denmark
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Uncoordinated market (UM)

G1 100 35 0

G2 110 30 86
G3 50 10 50
WP 34 0 34

Powers in MW, costs in S/MWh

Stochastic PM
G1 100 35 40
G2 110 30 70
G3 50 10 50
WP 34 0 10

Powers in MW; costs in S/MWh
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2 Dealing with Uncertain Supply

CITIES (Alternatives)

v' The stochastic dispatch is more efficient, but ...
* may schedule flexible units in a loss-making position;

 guarantees cost recovery for flexible producers only in expectation, not per
scenario;

* this expectation depends on a centralized forecasting tool out of
producers’ control.

v’ Is there a way to approximate “Stochastic PM” as much as possible while
resolving the issues above?

35 DTU Compute, Technical University of Denmark
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Dealing with Uncertain Supply

(Centralized dispatch of stochastic production)

-

\

~

Minimize C°(pg, py,)

pG!pW 150

S.t. hD(pG’ pW’5O)_I =0

gD(pGﬁOV
y

Pe. Pw S

Minimize C®°(y,)
ya)'

S.t.

0 (y,1,8,,07) + W, — i, =0
9°(y,,0,, Pa;W_)<0

~

J

36
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Do we have something better than the
expected production?

i
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™
CITIES . .
(Centralized dispatch of Stoch. Prod.)
G3® iL2 (90 MW) Uncoordinated market (UM)
100 MW N Unit p™ C Pt
Bus | G1 100 35 0
WP [y
o Mw)l G@ S‘?Q High (50 MW, 0.6) G2 110 30 86
Low: (10 MW, 0.4) G3 50 10 50
4600 ‘ ' ' ' WP 34 0 34
4400 Powers in MW; costs in S/MWh
7y
g 4200 Improved UM (IUM)
O
O
& 3800 G1 100 35 0
L
3600} - G2 110 30 90
1) EN————— . W |
‘ . i G3 50 10 50
M09 20 30 40 50
wind farm dispatch (MW) wp 34 0 30

37 DTU Compute, Technical University of Denmark Powers in MW; costs in S/MWh
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Bus 1

ot DO Q™ |

UM
Stoch PM

UM

38 DTU Compute, Technical University of Denmark

Example

(Centralized dispatch of Stoch. Prod.)

L2 (90 MW)

Total

3720

3184

3520

High: (50 MW, 0.6)

Low: (10 MW, 0.4)

Day ahead Balancing

shedding

C
35
30

10

0

Powers in MW, costs in S/MWh

Improved

C
35
30
10
0

Powers in MW; costs in S/MWh

i

Uncoordinated market (UM)

P.sch
0

86
50
34

Psch

90
50
30
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> Dealing with Uncertain Supply

“5(Centralized dispatch of stochastic production)

v How do we compute the “best” schedule for the stochastic power production?

0< pI™ <W
(P P 8°) carg{Minimize  C°(x/,x,)
st.  h°(xg,%x/,0)-1=0
9° (Xs

\ Xy < O

39 DTU Compute, Technical University of Denmark
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11 Dealing with Uncertain Supply =

CITIES

Min. 35pc, +30pc, +10p, + 0-6(40% —34r; ), + 200(1?;1“ + li'fd))
+ 0.4(40r2§| |~ 3415, +200 ( phed lg?ed))

+ _ !shed 50 WSpm (02 - 52h)
St ren—Tonthy +30-—py—-W =—-o—,

0.13
she Spi 585
faffraﬁh?“+1oprfwf””—%,
50_52!1)
H H . Fhfd*—( 2 ‘
Centralized dispatch of stochastic R ER
i shed (52—(52')
production gt 2
Do, + 16, <100, pg +715, < 100,
P, —Ten =20, pg, —1¢;1 = 0,
921 %21
,1003m§100, —100 < 013 < 100,

fen <20, 1g, <20,
e <40, 15, <40,
wiP < 50, WP < 10,

et <80, <80, <90, I* <90,

shed Ished’ !shed Ished

' ' spill spill
Ten Ter Ton o, Wy Wi N TR o b =0,

0 < py™ <50,

(Pc1> Pc,» Pe,» Pw: 53) g arg Minimize HE}SXG1 + 30x, + 10xq,

XGy - XGy . XGy. Xw.

0
s.t. XG, + X, +Xw —-80= —m : /?,
0
XG, *90:0]3:/»2]3,

X, < 100:]1(;1., Xc, < ]]O:ﬂcr Xc, §50:ﬂ53,

0 _

— 100 < ——= < 100 : (us, [;),
Xw <P p.

40 DTU Compute, Technical University of Denmark X6, . X6y, Xgy, Xw = 0 (EG” He,s Hy, E),
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f}ES 24-bus Case Study

i
=

i

* Based on the IEEE Reliability test System

* Total system demand = 2000 MW

41

* Per-unit wind power productions are modeled using Beta
distributions with a correlation coefficient p

DTU Compute, Technical University of Denmark



24-bus Case Study

D

o

o

(=}
T

000 UM
—— StochPM |
1000 — IUM !
O 1 1 1 : 1 1
20 25 30 35 40 45
Wind power penetration (%)
6000F : 7
|
D 5000 i .
@ 4000t ! -
(@] |
|
E 3000+ -
o |
L 2000 — UM ! -
>
( — StochPM I
1000+ I
— UM !
0 I I 1 I I I
20 25 30 35 40 45
Wind power penetration (\%)
42 DTU Compute, Technical University of Denmark

e Under “IUM” and “StochPM”, higher penetrations of
stochastic production never lead to an increase in the
expected cost

* “IUM” and “StochPM” are robust to the spatial
correlation of stochastic energy sources



il
1
C.T/ﬁ; 24-bus Case Study

1 6 11 12

Expected

i 47.9 49.4 102.2 67.4

Stochpm ' \Vearee ~14.9 ~10.7 165 9.7
losses (S)

Probability 0.81 0.71 0.71 0.75
profit<0

uM Expected 379.8 359.7 724.9 389.1
profit (S)

Ium Expected 170.2 263.7 531.6 178.7
profit (S)

43 DTU Compute, Technical University of Denmark
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> Dealing with Uncertain Supply
cITES (The role of virtual bidding)

v Is there a way to sidestep the bilevel program in practice?
v’ Yes, in some cases, by allowing for virtual bidding. See:

Juan M. Morales and Salvador Pineda (2016). On the Inefficiency of the Merit Order in
Forward Electricity Markets with Uncertain Supply. Available on arXiv:

http://arxiv.org/abs/1507.06092

v' Risk-neutral virtual bidder:

Maximize pv)\D+/Apv)\B(w)f(w)dw
Q

pv,Apy

st. pyv+Apy =0

44 DTU Compute, Technical University of Denmark


http://arxiv.org/abs/1507.06092

>

b Other Mechanisms

* Increase in the number of market stages: Adjustment markets allow redefining forward
positions and trading with a lesser degree of uncertainty

4 ) 4 )
Day-ahead Balancing

market market
\_ Y \ J

[ Adjustment markets J lliquid

I I Timei
Day d-1 Day d

45 DTU Compute, Technical University of Denmark
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Other Mechanisms

e Guarantee balancing resources

 Help flexible producers (missing money in
price-capped energy markets)

Day-a head e Demand curve? Cost allocation?
market
C h [Balancing market]
Reserve/flexiramp
markets
\§ J
—_— 5
Day d Day d-1 Time
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e The growing penetration of weather-driven energy sources calls not only for increased
system flexibility, but also for a better utilization of the existing one.

* Power systems are to be operated, therefore, with a higher degree of flexibility: market
mechanisms that anticipate the need for flexibility and plan accordingly are promising
solutions.

* Critical market modifications/additions with the potential to increase system efficiency
and reliability, while being easily implementable are to be identified.

* Wrong current market practices should also be pointed out: for example, forward
markets should not clear the expected stochastic production by default.

* Remember that we are talking about markets: economic incentives and prices are to
support the most efficient solution for the system.
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Thanks for your attention!

Questions?

mpute, Technical University of Denmark
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