

Mechanisms to Increase the Efficiency of Twostage Electricity Markets with Uncertain Supply

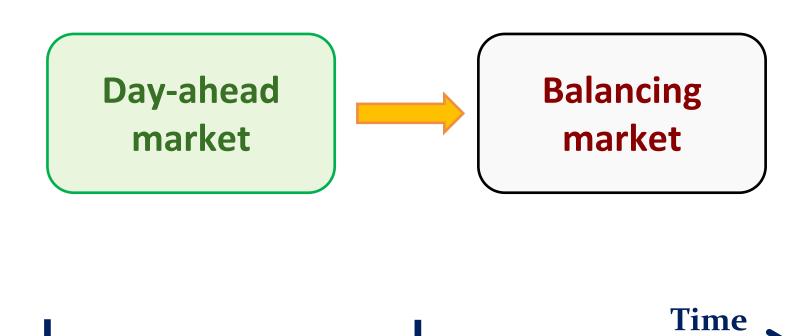
Juan M. Morales

PSCC-2016 Genoa, Italy June 20, 2016

DTU Compute Institut for Matematik og Computer Science

Outline

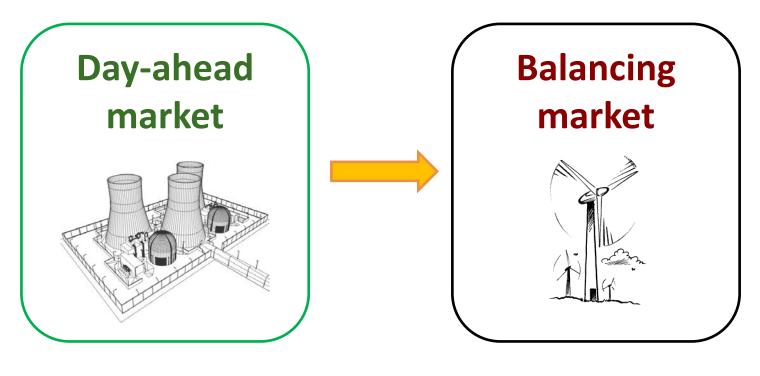
- 1. Basic structure of short-term electricity markets
- 2. Problem statement
- 3. Dealing with uncertain supply: market mechanisms
- 4. Concluding remarks



3

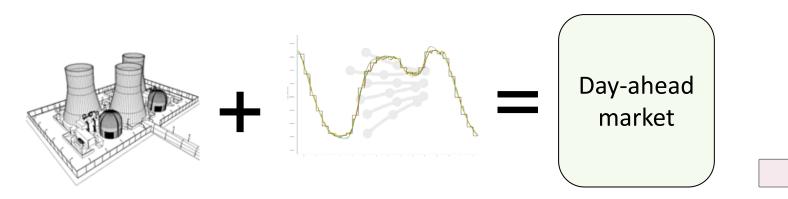
Short-term Electricity Markets

(Basic structure)

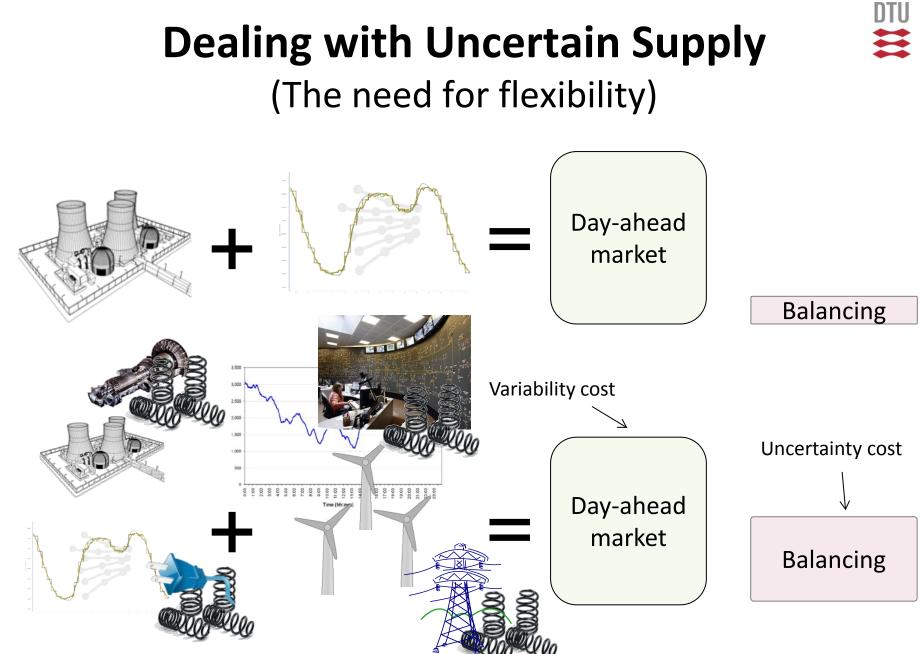


DTU Compute, Technical University of Denmark

Short-term Electricity Markets


(Basic structure)

Inflexible units (need advance planning)


Wind producers/consumers (need balancing energy)

Dealing with Uncertain Supply (The need for flexibility)

Balancing

Dealing with Uncertain Supply (The need for flexibility) Day-ahead market Balancing Variability cost 3 000 2,500 2,000 1.500 Uncertainty cost 1.00 3.00 5.00 5.00 6.00 8.00 8.00 8.00 8.00 8.00 9.00 11.00 11.00 11.00 600 800 800 800 800 800 800 8000 8000 Day-ahead market Balancing

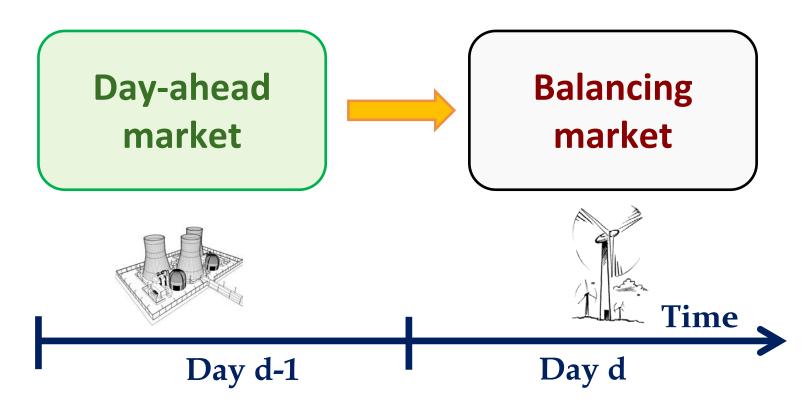
Dealing with Uncertain Supply (The need for flexibility) Day-ahead market Balancing Variability cost Uncertainty cost 600 8.00 8.00 8.00 8.00 Day-ahead market **Balancing**

Dealing with Uncertain Supply (The need for flexibility)

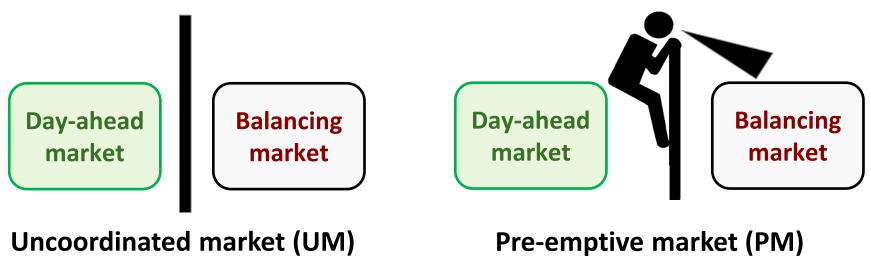
Flexibility is a must!

Dealing with Uncertain Supply (The need for flexibility)

Flexibility is a must!

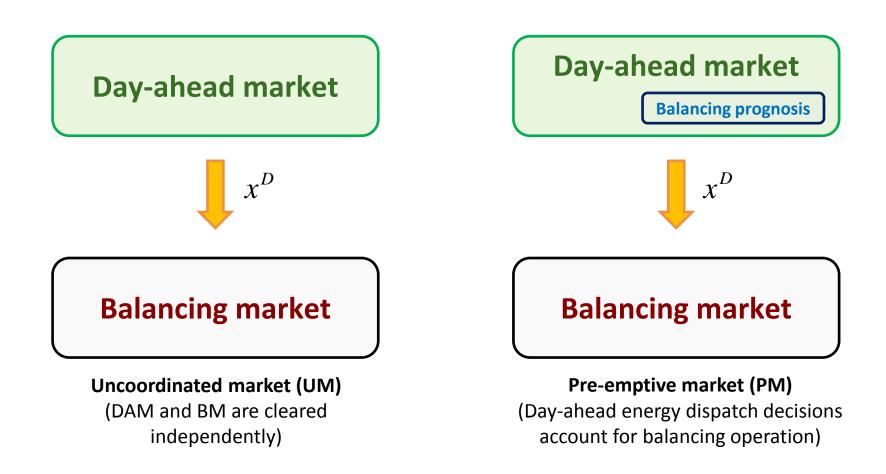


Dealing with Uncertain Supply


(Market mechanisms)

Dealing with Uncertain Supply (Market mechanisms)

The design of the market conditions the value of system flexibility



Inefficient management of system flexibility to cope with variability and uncertainty Perfect management of system flexibility to cope with variability and uncertainty

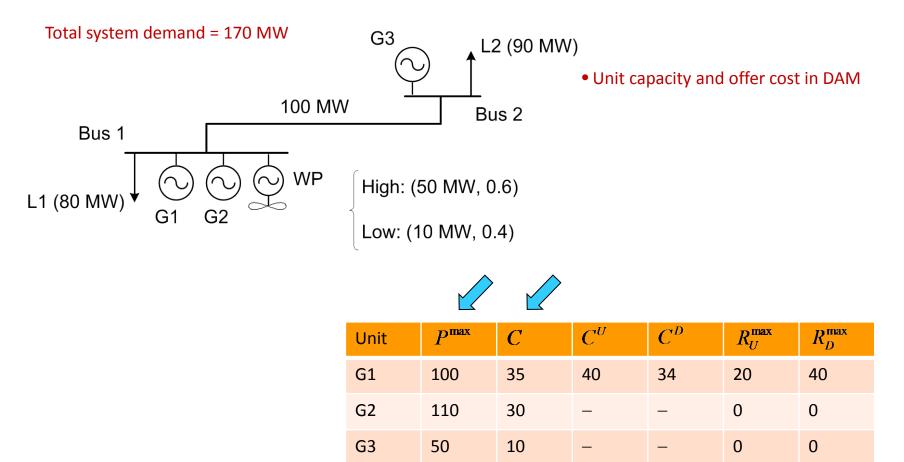
Dealing with Uncertain Supply

(Market mechanisms)

Dealing with Uncertain Supply (Uncoordinated market)

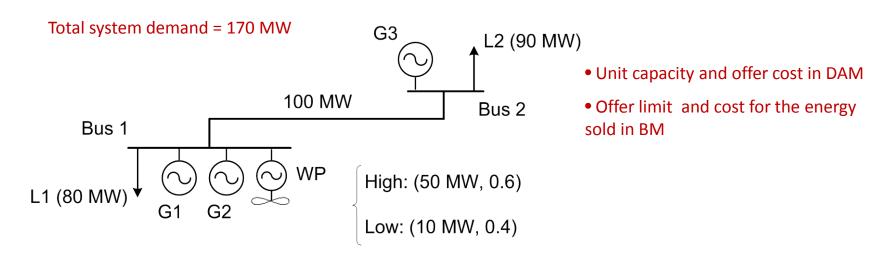
$\begin{array}{l} \text{Minimize} \quad C^{D}(p_{G}, p_{W}) \\ s.t. \quad h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 \\ g^{D}(p_{G}, \delta^{0}) \leq 0 \\ p_{W} \leq \hat{W} \end{array}$

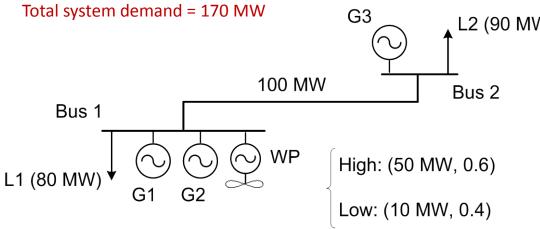
Typically the (conditional) expected production!


$$p_{G}^{*}, p_{W}^{*}, \delta^{0^{*}}$$

$$Minimize_{y_{\omega'}} C^{B}(y_{\omega'})$$

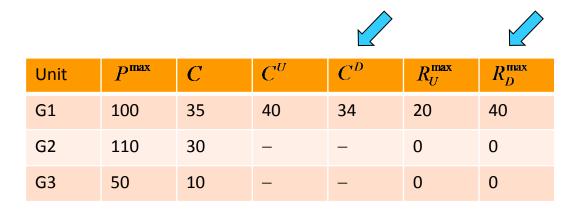
$$s.t. \quad h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0^{*}}) + W_{\omega'} - p_{W}^{*} = 0$$

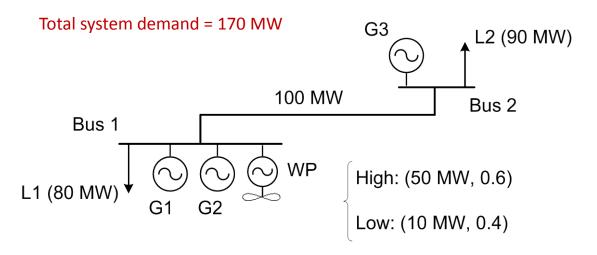

$$g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$$



Unit	P^{\max}	С	C^{U}	C^{D}	R_U^{\max}	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	-	-	0	0
G3	50	10	-	-	0	0

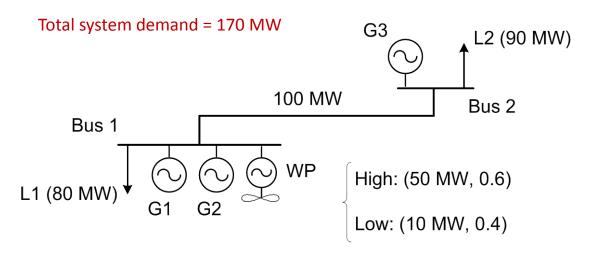
 \wedge





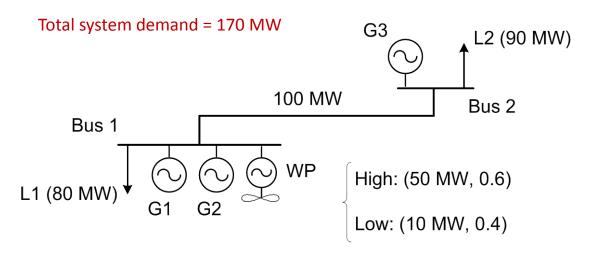
L2 (90 MW)

- Unit capacity and offer cost in DAM
- Offer limit and cost for the energy sold in BM
- Offer limit and cost for the energy repurchased in BM



Expensive, but flexible

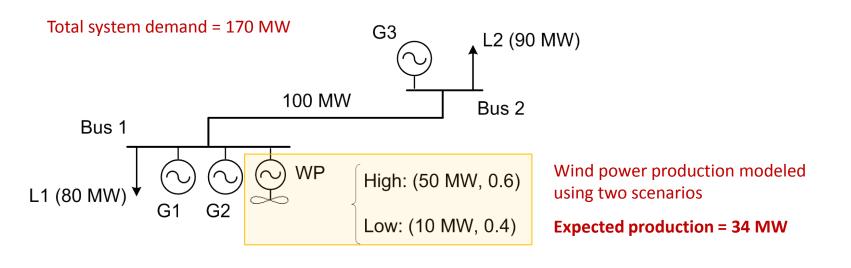
Unit	P^{\max}	С	C^{U}	C^{D}	R_U^{\max}	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	_	_	0	0



Unit	P^{\max}	С	C^{U}	C^{D}	R_U^{\max}	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	-	-	0	0
G3	50	10	-	-	0	0

Powers in MW; costs in \$/MWh

Less expensive, but inflexible



Unit	P^{\max}	С	C^{U}	C^{D}	R_U^{\max}	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	-	0	0
G3	50	10	-	-	0	0

Cheap, but inflexible

Unit	P^{\max}	С	C^{U}	C^{D}	R_U^{\max}	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	-	-	0	0

Dealing with Uncertain Supply (Uncoordinated market)

$$Minimize \quad C^{D}(p_{G}, p_{W})$$
s.t.
$$h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$$

$$g^{D}(p_{G}, \delta^{0}) \leq 0$$

$$p_{W} \leq \hat{W}$$

$$p_{G}^{*}, p_{W}^{*}, \delta^{0^{*}}$$

$$Minimize \quad C^{B}(y_{\omega'})$$
s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0^{*}}) + W_{\omega'} - p_{W}^{*} = 0$$

$$g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$$

$$\begin{split} \text{Min. } & 35p_{G_1} + 30p_{G_2} + 10p_{G_3} \\ \text{s.t. } & p_{G_1} + p_{G_2} + p_W - 80 = -\frac{\delta_2^0}{0.13} \ , \\ & p_{G_3} - 90 = \frac{\delta_2^0}{0.13} \ , \\ & p_{G_1} \leq 100 \ , \quad p_{G_2} \leq 110 \ , \quad p_{G_3} \leq 50 \ , \\ & -100 \leq \frac{\delta_2^0}{0.13} \leq 100 \ , \\ & p_W \leq 34 \ , \\ & p_{G_1} \ , \ p_{G_2} \ , \ p_{G_3} \ , \ p_W \geq 0 \ , \end{split}$$

Dealing with Uncertain Supply

(Pre-emptive market)

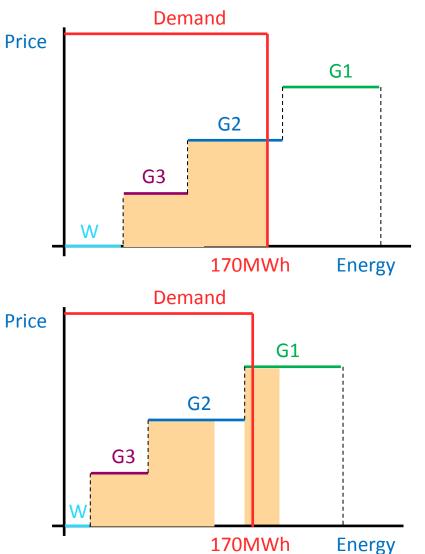
$$Minimize C^{D}(p_{G}, p_{W})$$
s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \hat{W}$

$$p_{G}^{*}, p_{W}^{*}, \delta^{0^{*}}$$
Balance
$$Minimize C^{B}(y_{\omega'})$$
s.t. $h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0^{*}}) + W_{\omega'} - p_{W}^{*} = 0$
 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$

$$\begin{split} & \underset{p_{G}, p_{W}, \delta^{0}; y_{\omega}, \forall \omega}{\text{Minimize}} \quad C^{D}(p_{G}, p_{W}) + \mathbb{E}_{\omega} \begin{bmatrix} C^{B}(y_{\omega}) \end{bmatrix} \\ & \text{s.t.} \quad h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 \\ & g^{D}(p_{G}, \delta^{0}) \leq 0 \\ \hline p_{W} \leq \overline{W} \\ & h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \omega \\ & g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega \\ \hline \\ & \text{s.t.} \quad h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0 \\ & g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0 \\ \end{split}$$

Dealing with Uncertain Supply (Pre-emptive market)

- Two-stage stochastic programming problem
- Expectation of the balancing costs: It requires probabilistic forecasts
- Scenario-based modeling of uncertainty
- Good modeling \Rightarrow many scenarios \Rightarrow increased dimensionality


- Min. $35p_{G_1} + 30p_{G_2} + 10p_{G_3} + 0.6 \left(40r_{G_1h}^+ 34r_{G_1h}^- + 200 \left(l_{1h}^{\text{shed}} + l_{2h}^{\text{shed}} \right) \right) + 0.4 \left(40r_{G_1l}^+ 34r_{G_1l}^- + 200 \left(l_{1l}^{\text{shed}} + l_{2l}^{\text{shed}} \right) \right)$
- s.t. Day-ahead dispatch equations +

 $p_W \le 50 \; ,$

 $r_{G_1h}^+ - r_{G_1h}^- + l_{1h}^{\text{shed}} + 50 - p_W - W_h^{\text{spill}} = \frac{(\delta_2^0 - \delta_{2h})}{0.12}$, $r_{G_1l}^+ - r_{G_1l}^- + l_{1l}^{\text{shed}} + 10 - p_W - W_l^{\text{spill}} = \frac{(\delta_2^0 - \delta_{2l})}{0.12}$, $l_{2h}^{\text{shed}} = -\frac{(\delta_2^0 - \delta_{2h})}{0.12} ,$ $l_{2l}^{\text{shed}} = -\frac{(\delta_2^0 - \delta_{2l})}{0.12} ,$ $p_{G_1} + r_{G_1 h}^+ \le 100$, $p_{G_1} + r_{G_1 l}^+ \le 100$, $p_{G_1} - r_{G_1h}^- \ge 0$, $p_{G_1} - r_{G_1l}^- \ge 0$, $-100 \leq \frac{\delta_{2h}}{0.12} \leq 100$, $-100 \leq \frac{\delta_{2l}}{0.12} \leq 100$, $r_{C_1h}^+ \leq 20$, $r_{C_1l}^+ \leq 20$, $r_{G_1h}^- \leq 40$, $r_{G_1l}^- \leq 40$, $W_{h}^{\text{spill}} < 50$, $W_{l}^{\text{spill}} < 10$, $l_{1h}^{\text{shed}} \leq 80$, $l_{1l}^{\text{shed}} \leq 80$, $l_{2h}^{\text{shed}} \leq 90$, $l_{2l}^{\text{shed}} \leq 90$, $r^+_{G_1h} , r^+_{G_1l} , r^-_{G_1h} , r^-_{G_1l} , W^{\rm spill}_h, W^{\rm spill}_l, l^{\rm shed}_{1h} , l^{\rm shed}_{1l} , l^{\rm shed}_{2h} , l^{\rm shed}_{2l} \geq 0 ,$

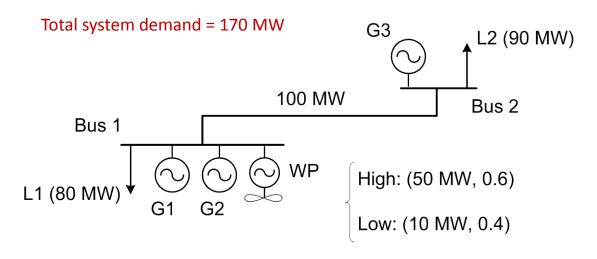
25 DTU Compute, Technical University of Denmark

Uncoordinated market (UM)

Unit	P^{\max}	С	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Pre-emptive market (PM)

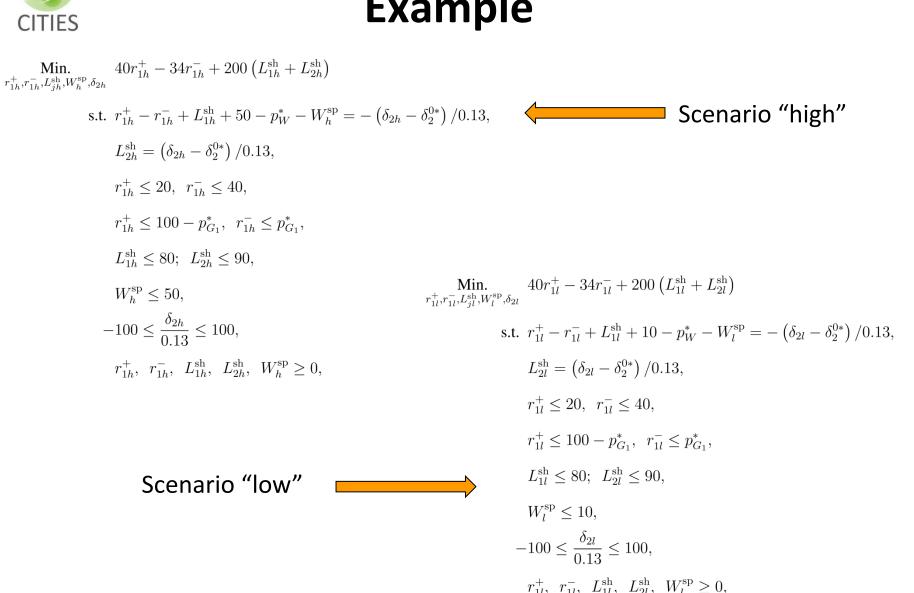

Unit	P^{\max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

Example

- The wind producer is dispatched only to 10 MW
- G1 is dispatched to 40, even though it is more expensive than G2
- The "traditional" cost merit-order principle does not hold in PM
- G1 is dispatched to exploit its ability to reduce production in real time

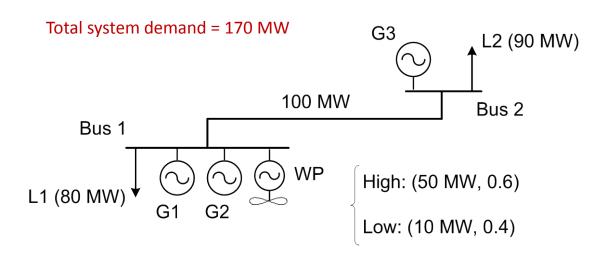
Uncoordinated market (UM)

Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34


Powers in MW; costs in \$/MWh

Pre-emptive market (PM)

Unit	P^{\max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10



Example

	Total	Day ahead	Balancing	Load shedding	
UM	3720	3080	320	320	Costly!
PM	3184	4000	-816	0	(€200/MWh)

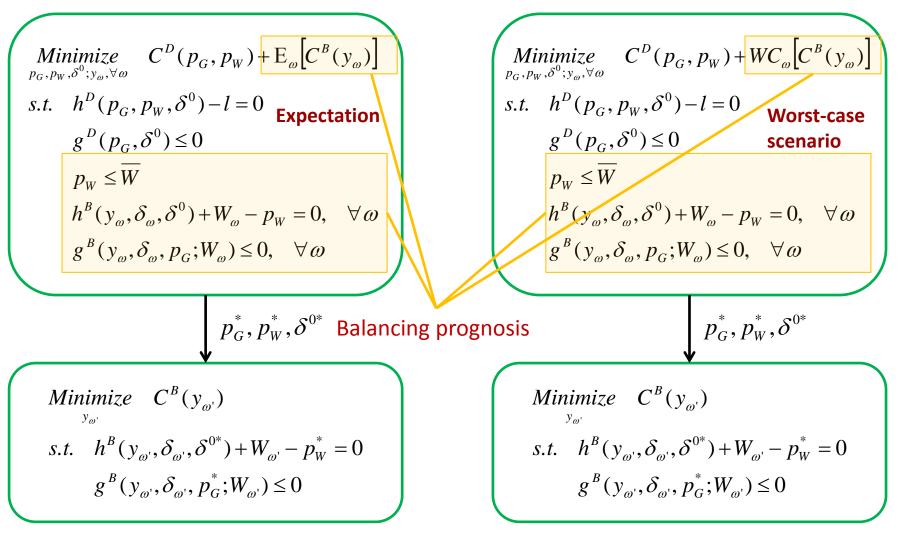
PM results in a more expensive day-ahead dispatch that leads, however, to a much more efficient balancing operation

Uncoordinated market (UM)

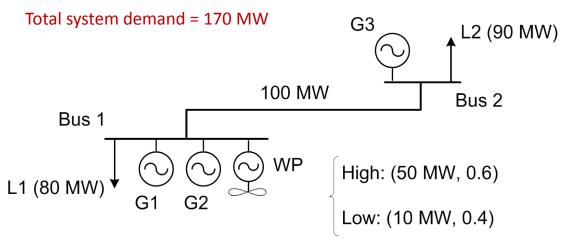
Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Pre-emptive market (PM)


Unit	P^{\max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

Dealing with Uncertain Supply


(Pre-emptive market)

Example

Robust PM

Unit	P^{\max}	С	P ^{.sch}
G1	100	35	0
G2	110	30	110
G3	50	10	50
WP	34	0	10

Powers in MW; costs in \$/MWh

Uncoordinated market (UM)

Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Stochastic PM

Unit	P ^{max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

Example

On average

	Total	Day ahead	Balancing	Load shedding
UM	3720	3080	320	320
SPM	3184	4000	-816	0
RPM	3800	3800	0	0

In scenario low (worst-case)

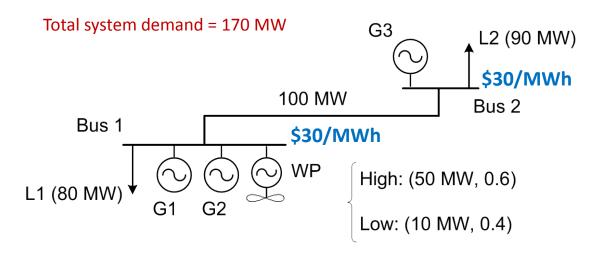
	Total	Day ahead	Balancing	Load shedding
UM	4680	3080	800	800
SPM	4000	4000	0	0
RPM	3800	3800	0	0

Scheduled production (MWh)

Unit	UM	SPM	RPM
G1	0	40	0
G2	86	70	110
G3	50	50	50
WP	34	10	10

In scenario high (best-case)

	Total	Day ahead	Balancing	Load shedding
UM	3080	3080	0	0
SPM	2640	4000	-1360	0
RPM	3800	3800	0	0


Prices & Revenues

$$\begin{split} & \underbrace{\text{Minimize} \quad C^{D}(p_{G}, p_{W})}_{\substack{g, c, p_{W}, \delta^{0} \\ g^{D}(p_{G}, \delta^{0}) \leq 0 \\ p_{W} \leq \hat{W}} \\ & & & \\ & &$$

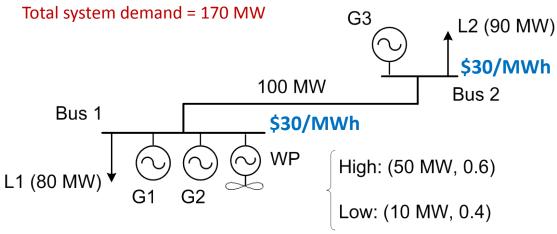
Example

Uncoordinated market (UM)

Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Stochastic PM


Unit	P ^{max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

In "Stochastic PM" unit G1 is dispatched day ahead in a **loss-making position**

Example

Duefit C1	Europete d	Per scenario	
Profit G1	Expected	High	Low
UM	1320	0	3300
Stoch PM	24	173.33	-200

In "Stochastic PM" unit G1 incur losses if scenario "low" happens

Powers in

Uncoordinated market (UM)

Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

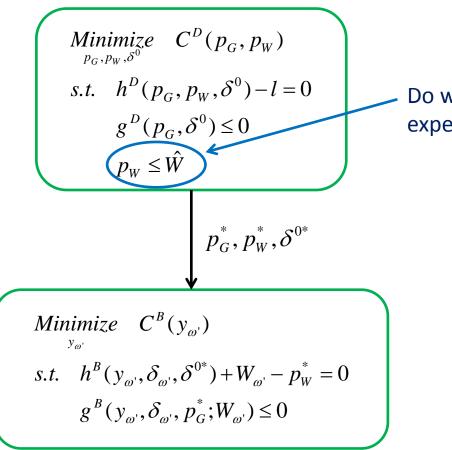
Stochastic PM

Unit	P ^{max}	С	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

Powers in MW; costs in \$/MWh

34 DTU Compute, Technical University of Denmark

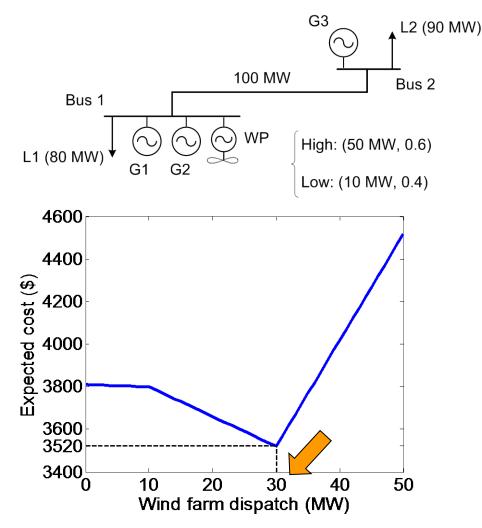
Dealing with Uncertain Supply (Alternatives)


- ✓ The stochastic dispatch is more efficient, but ...
 - may schedule flexible units in a loss-making position;
 - guarantees cost recovery for flexible producers **only in expectation**, not per scenario;
 - this expectation depends on a centralized forecasting tool out of producers' control.
- ✓ Is there a way to approximate "Stochastic PM" as much as possible while resolving the issues above?

CITIES

Dealing with Uncertain Supply

(Centralized dispatch of stochastic production)


Do we have something better than the expected production?

CITIES

(Centralized dispatch of Stoch. Prod.)

37 DTU Compute, Technical University of Denmark

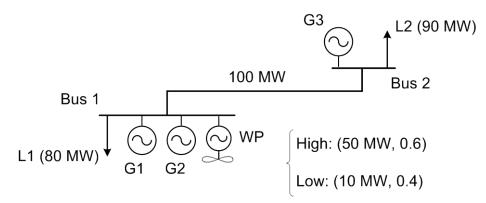
Uncoordinated market (UM)

Unit	P ^{max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Improved UM (IUM)

Unit	P ^{max}	С	P^{sch}
G1	100	35	0
G2	110	30	90
G3	50	10	50
WP	34	0	30


Powers in MW; costs in \$/MWh

Example

CITIES

(Centralized dispatch of Stoch. Prod.)

Uncoordinated market (UM)

Unit	P^{\max}	С	P ^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Improved

Unit	P ^{max}	С	P^{sch}
G1	100	35	0
G2	110	30	90
G3	50	10	50
WP	34	0	30

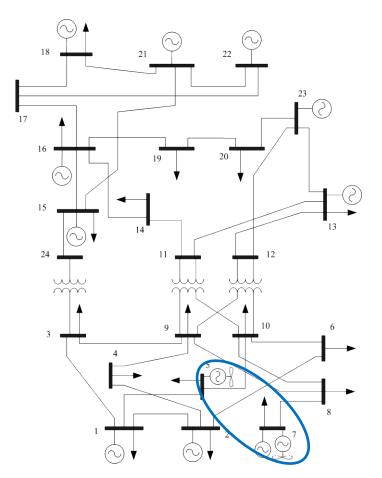
	Total	Day ahead	Balancing	Load shedding
UM	3720	3080	320	320
Stoch PM	3184	4000	-816	0
IUM	3520	3200	320	0

Powers in MW; costs in \$/MWh

✓ How do we compute the "best" schedule for the stochastic power production?

$$\begin{split} \underset{p_{G}, p_{W}, \delta^{0}(p_{W}^{\max}; y_{\omega}, \delta_{\omega}, \forall \omega)}{\text{Minimize}} & C^{D}(p_{G}, p_{W}) + \mathbb{E}_{\omega} \Big[C^{B}(y_{\omega}) \Big] \\ \text{s.t.} & h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \omega \\ & g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega \\ & 0 \leq p_{W}^{\max} \leq \overline{W} \\ & (p_{G}, p_{W}, \delta^{0}) \in \arg \Big\{ \underset{x_{G}, x_{W}, \theta}{\text{Minimize}} & C^{D}(x_{G}, x_{W}) \\ & \text{s.t.} & h^{D}(x_{G}, x_{W}, \theta) - l = 0 \\ & g^{D}(x_{G}, \theta) \leq 0 \\ & x_{W} \leq p_{W}^{\max} \Big\} \end{split}$$

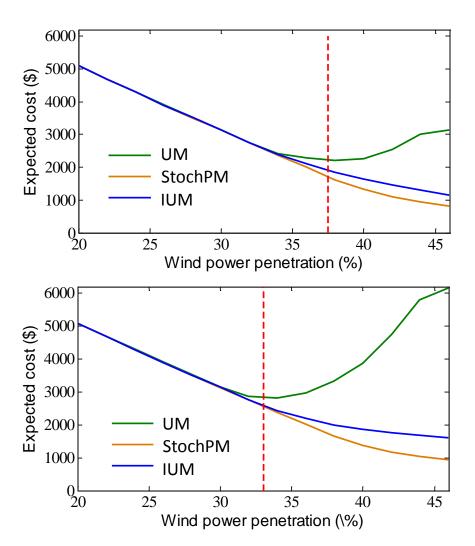
Dealing with Uncertain Supply


DTU

Centralized dispatch of stochastic production

Min. $35p_{G_1} + 30p_{G_2} + 10p_{G_3} + 0.6(40r_{G_1h}^+ - 34r_{G_1h}^- + 200(l_{1h}^{\text{shed}} + l_{2h}^{\text{shed}}))$ $+0.4 \left(40r_{G_1l}^+ - 34r_{G_1l}^- + 200 \left(l_{1l}^{\text{shed}} + l_{2l}^{\text{shed}}\right)\right)$ s.t. $r_{G_1h}^+ - r_{G_1h}^- + l_{1h}^{\text{shed}} + 50 - p_W - W_h^{\text{spill}} = \frac{(\delta_2^0 - \delta_{2h})}{0.12}$, $r_{G_{1}l}^{+} - r_{G_{1}l}^{-} + l_{1l}^{\text{shed}} + 10 - p_{W} - W_{l}^{\text{spill}} = \frac{(\delta_{2}^{0} - \delta_{2l})}{0.13},$ $l_{2h}^{\text{shed}} = -\frac{\left(\delta_2^0 - \delta_{2h}\right)}{0.13},$ $l_{2l}^{\text{shed}} = -\frac{\left(\delta_2^0 - \delta_{2l}\right)}{0.13},$ $p_{G_1} + r_{G_1h}^+ \leq 100, \quad p_{G_1} + r_{G_1h}^+ \leq 100,$ $p_{G_1} - r_{G_1h}^- \ge 0, \quad p_{G_1} - r_{G_1l}^- \ge 0,$ $-100 \leqslant \frac{\delta_{2h}}{0.13} \leqslant 100, -100 \leqslant \frac{\delta_{2l}}{0.13} \leqslant 100,$ $r_{G_1h}^+ \leqslant 20, \quad r_{G_1l}^+ \leqslant 20,$ $r_{G_1h}^- \leqslant 40, \quad r_{G_1l}^- \leqslant 40,$ $W_h^{\text{spill}} \leq 50, \ W_l^{\text{spill}} \leq 10,$ $l_{1h}^{\text{shed}} \leq 80, \quad l_{1l}^{\text{shed}} \leq 80, \quad l_{2h}^{\text{shed}} \leq 90, \quad l_{2l}^{\text{shed}} \leq 90.$ $r_{G_{1}h}^{+}, r_{G_{1}l}^{-}, r_{G_{1}h}^{-}, r_{G_{1}l}^{-}, W_{h}^{\text{spill}}, W_{l}^{\text{spill}}, l_{1h}^{\text{shed}}, l_{1l}^{\text{shed}}, l_{2h}^{\text{shed}}, l_{2l}^{\text{shed}} \ge 0,$ $0 \leqslant p_W^{\max} \leqslant 50$ $\left(p_{G_1}, \ p_{G_2}, \ p_{G_3}, \ p_W, \ \delta_2^0\right) \in \arg \min_{x_{G_1}, \ x_{G_2}, \ x_{G_2}, \ x_{W}, \ heta} 35x_{G_1} + 30x_{G_2} + 10x_{G_3}$ s.t. $x_{G_1} + x_{G_2} + x_W - 80 = -\frac{\theta}{0.13} : \lambda_1^D$ $x_{G_3}-90=\frac{\theta}{0.13}:\lambda_2^{\rm D},$ $x_{G_1} \leqslant 100: \bar{\mu}_{G_1}, \quad x_{G_2} \leqslant 110: \bar{\mu}_{G_2}, \quad x_{G_3} \leqslant 50: \bar{\mu}_{G_3},$ $-100 \leq \frac{\theta}{0.13} \leq 100 : (\underline{\mu}_{\delta}, \overline{\mu}_{\delta}),$ $x_W \leq p_W^{\max} : \overline{\rho},$ $x_{G_1}, x_{G_2}, x_{G_2}, x_W \ge 0: (\mu_{G_1}, \mu_{G_2}, \mu_{G_3}, \rho),$

24-bus Case Study



- Based on the IEEE Reliability test System
- Total system demand = 2000 MW

 \bullet Per-unit wind power productions are modeled using Beta distributions with a correlation coefficient ρ

24-bus Case Study

• Under "IUM" and "StochPM", higher penetrations of stochastic production never lead to an increase in the expected cost

• "IUM" and "StochPM" are robust to the spatial correlation of stochastic energy sources

24-bus Case Study

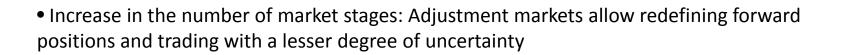
Wind penetration 38% ρ = 0.35		Unit			
		1	6	11	12
Stoch PM	Expected profit (\$)	47.9	49.4	102.2	67.4
	Avearge losses (\$)	-14.9	-10.7	-16.5	-9.7
	Probability profit < 0	0.81	0.71	0.71	0.75
UM	Expected profit (\$)	379.8	359.7	724.9	389.1
IUM	Expected profit (\$)	170.2	263.7	531.6	178.7

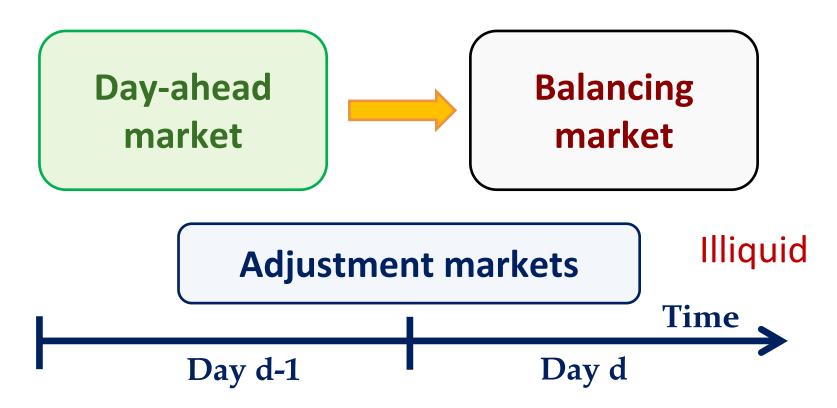
✓ Is there a way to sidestep the bilevel program in practice?

✓ Yes, in some cases, by allowing for virtual bidding. See:

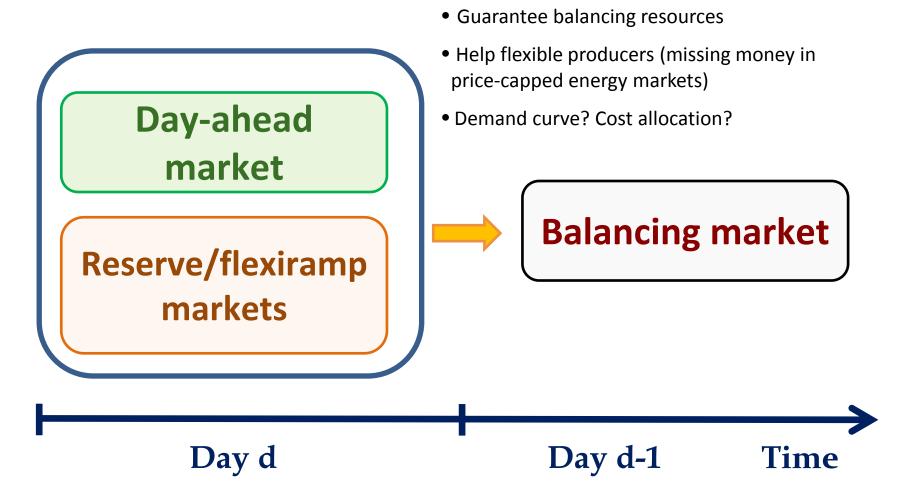
Juan M. Morales and Salvador Pineda (2016). On the Inefficiency of the Merit Order in Forward Electricity Markets with Uncertain Supply. Available on arXiv:

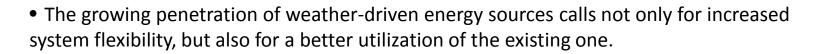
http://arxiv.org/abs/1507.06092


✓ Risk-neutral virtual bidder:


$$\underset{p_{V},\Delta p_{V}}{\text{Maximize}} \quad p_{V}\lambda^{D} + \int_{\Omega} \Delta p_{V}\lambda^{B}(\omega)f(\omega)d\omega$$

s.t.
$$p_V + \Delta p_V = 0$$





Other Mechanisms

• Power systems are to be operated, therefore, with a higher degree of flexibility: market mechanisms that anticipate the need for flexibility and plan accordingly are promising solutions.

• Critical market modifications/additions with the potential to increase system efficiency and reliability, while being easily implementable are to be identified.

• Wrong current market practices should also be pointed out: for example, forward markets should not clear the expected stochastic production by default.

• Remember that we are talking about markets: economic incentives and prices are to support the most efficient solution for the system.

Thanks for your attention! Questions?