Multi-Vector District Energy System Management: Modelling Aspects and Challenges

Dr. Eduardo Alejandro (Alex) Martínez Ceseña
Prof. Pierluigi Mancarella

The University of Manchester
p.mancarella@manchester.ac.uk
Outline

- **Background**: Building as the basic brick
- **Decentralized modelling**: Multi-energy exchanges between systems
Background:

Building as the basic brick
Context and challenges: From the generation to the consumption side

Renewables:
- Low carbon
- Cheap
- Inflexible
- Uncertain

Smart buildings:
- Flexible
- Controllable
- Small and complex

Future systems:
- Classical de-coupling of energy vectors is inefficient
Challenges at the building level

- Need for understanding multi-energy consumption in buildings
 - Future low-carbon technologies
 - Heating (various heat pumps, microCHP, storage)
 - Solar
 - EV
 - Capturing diversity across dimensions
 - House type and physical characteristics
 - Insulation level
 - Use of appliances and heating set points
 - Geographic
 - etc
- Provide high resolution (e.g., 1 minute) to capture physical aspects
- Capturing thermal inertia and comfort level impact
Electro-thermal modelling

Supply

Building

Heat emitters

Building energy consumption model

Example: DR considering 300l Buffer tank

- **Dwelling**: Semi-detached house
- **Heating unit**: Air source heat pump
- **Number of dwellings**: 500
- **DR period**: 18:00-19:00
- **Emitter**: Underfloor heating unit
- **Insulation level**: modern (built between 1944-1984)
- **Space heating buffer options**: 0/150/300/600 litres
- **Weather**: Cold Winter weekday (range from -5.0 to 0.1°C)
Example: DR considering 300l Buffer tank

Demand profile

Temperature profile
Technical and economic aggregation

Example results

Aggregated outputs – Old detached house/4 occupants/ Winter/18°C set point/radiator 500 houses
Decentralized modelling:
Multi-energy exchanges between systems
Buildings or districts: Why model building level interactions?

- What is really more environmentally and economically attractive?

- Reduce total energy consumption
- Actuate only in target “low efficiency” buildings
- Minimise exports to the network

- Lower economic/ carbon intensive consumption
- Actuate in convenient locations directing energy flows to target buildings
- Actively provide demand response
Energy Efficiency Engine

- Solving the problem in an integrated manner is daunting and even computationally infeasible (involving stochastic MINLP problems)

- A methodology that iteratively couples parts of the problem provides a more practical approach

District perspective: Challenges

- The use of multi-energy technologies effectively couples the different networks (e.g., electricity, heat and gas)

<table>
<thead>
<tr>
<th>Global node numbering</th>
<th>Type</th>
<th>Gas to electricity</th>
<th>Gas to heat</th>
<th>Electricity to heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHP (large scale)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CHP (building 1)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gas generator (building 2)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Heat pump (building 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Electric heater (building 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gas boiler (building 5)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CHP (building 6)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CHP (building 7)</td>
<td>$H_p \eta_{pe}$</td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Heat pump (building 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Heat pump (building 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gas boiler (building 10)</td>
<td></td>
<td>$H_p \eta_{ph}$</td>
<td></td>
</tr>
</tbody>
</table>

- Multiple smart buildings now exchange different energy flows

Source: E. A. Martinez Ceseña, and P. Mancarella, “Operational optimization and environmental assessment of integrated district energy systems,” in PSCC 2016,
Multi-energy district: Integrated model

EAMC and PM, "Distribution network support from multi-energy demand side response in smart districts," ISGT Asia 2016.

Building

District

Networks

Case study: The University of Manchester

Electricity
- 85°C heat network
- 30 buildings

Heat
- Radial gas network
- 28 buildings

Gas
- Radial gas network
- 28 buildings

- 6.6 kV distribution network
- 17 buildings
Integrated model: Capabilities (1)

Which factors can be considered?

- Energy profiles: Time series for demand and price data, and so forth
- Existing infrastructure: PV and CHP, among others
- Intelligence levels: Load following or optimal mode
- Aggregation levels: Building or district levels
- Objectives: Costs or CO$_2$ minimisation, among others
Integrated model: Capabilities (2)

- On-off integer constraints for relevant devices
- Non linear electricity/heat curves modelled as MILP constraints
- Inter-temporal constraints for storage devices
- Annual (half-hour resolution) energy and price profiles
- Customisable scenarios to model uncertainty
Case study: The Manchester district

Large scale installation of multi-energy DER to reduce emissions by 30%

<table>
<thead>
<tr>
<th>Building</th>
<th>Installed capacity (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PV</td>
</tr>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>District</td>
<td>3495</td>
</tr>
</tbody>
</table>

Case study: The Manchester district

Flexible operation in heat-following mode (Reference) or to minimise emissions or costs?

<table>
<thead>
<tr>
<th>Building</th>
<th>Emissions (tCO₂)</th>
<th>Costs (£x10³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>257</td>
<td>173</td>
</tr>
<tr>
<td>2</td>
<td>692</td>
<td>638</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>518</td>
</tr>
<tr>
<td>4</td>
<td>111</td>
<td>104</td>
</tr>
<tr>
<td>District</td>
<td>16034</td>
<td>14854</td>
</tr>
</tbody>
</table>

Source: E. A. Martínez Ceseña, and P. Mancarella, “Operational optimization and environmental assessment of integrated district energy systems,” in PSCC 2016,
Acknowledgment

We would like to thank our research team in Manchester! 😊

As well as:

The European commission for its support via the seventh framework programme for research, technological development and demonstration for the District Information Modelling and Management for Energy Reduction (DIMMER) project (Grant No. 609084)

The Office of Gas and Electricity Markets (Ofgem) for its support via the Low Carbon Network Fund programme for the Smart Street project
Thank you
Any Questions?

Eduardo.MartinezCesena@manchester.ac.uk
p.mancarella@manchester.ac.uk

http://www.energy.manchester.ac.uk/research/multi-energy-systems/dimmer/
Selected references

Modelling of residential multi-energy technologies and multi-energy networks

Selected references

Multi-energy systems and distributed multi-generation framework

Selected references

Operational optimization and demand response in multi-energy systems

Selected references

Network planning and reliability assessment

Selected references

Planning under uncertainty of multi-energy systems

Selected references

Business cases of multi-energy systems

