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Introduction
1 Power imbalance and demand response in today’s grids

« Power imbalance issue - Demand response
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« Residential DR

According to FERC
* Most untapped DR potentials
« over 45% in 2019.

Fig. Actual peak demand savings in US (13,036 MW in 2015)



Introduction

O Typical residential HYAC systems in Hong Kong and Denmark

« Hong Kong

(building + inverter AC)

r

Inverter AC
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J Research aim

To use MPC method to control the residential HVAC systems making them respond to

Building

Denmark

(building + radiant floor heating)
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RFH system
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Heating
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dynamic electricity prices and reduce electricity bills.

Room
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Methodology

« Main idea

Use system model to predict the future evolution of the system and make some
preparations in advance

« Classic local controller VS MPC o ,
Model Objective Constraints

Reference Input Output \l/

— ! Controller » System > Reference Input Output
— > Optimizer » System >
‘ VS 5
Measurements Measurements
« Development cycle of a MPC controller
Industrial process Built environment

= System modeling = System control = System modeling = System control



Methodology

 Framework of the whole implementation of MPC

I
| Room model AC/RFH model :
| Developing a control-oriented Developing simplified model |
| RC room thermal model of AC/RFH systems |
| | I |
I Linearzing and discretizing Identifying AC/RFH system | |
| RC model using state space model |
| representation

I
I l |
| Identifying RC room thermal |
| model |

System Tin
——| MPC controller f——— _— >
Exogenous Operating| (AC/RFH+Building)
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lOnline model predictive control (receding horizon control)



Methodology --- offline system model development

Exterior
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Methodology --- offline system model development
1 Room model in state space form

dx = (Ax + Bu + Ed)dt + odw(t)

y=Cx+v

= AC + building in Hong Kong
System state x = [Twext Twint Tin  Tm]";

Input vector u = Qupac;

Disturbance vector d = [T, Isoiar Qinter]:

» RFH + building in Denmark

System state x = [Tw_ex: TW,inr Tin Tim Tﬂ Tpp]T5

Input vector 4 = Queatings

Disturbance vector d = [T,

Isoiar

Qinter]r;




Methodology --- offline system model development

> ldentify a room built in TRNSYS (Transient System Simulation Tool )

Residential building in Hong Kong (LXWXH: 4.8mX3.6mX3m; WWR =0.2)

» Comparisons between data from TRNSYS and RC model
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Methodology --- offline system model development

» ldentify a room built in TRNSYS

Residential building in Nordhavn, Denmark (L xXWXH: 8.9mX6.22mX 3m; WWR = 0.45)

» Comparisons between data from TRNSYS and RC model
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Methodology --- offline system model development

O Inverter AC model

= Objectives
Obtain steady-state performance data under a range of operating conditions

i-e- Q - 1:(Ncomp,-l-out,-l-in) COP = 1:(Ncomp,-l-out,-l-in)
= Solution

Physical modeling |:> Performance maps (control-oriented)

m Perfo rmance m ap (a) Q (Ncomp= 30Hz) (b) Q (Ncomp= 60Hz) (c) Q (Ncomp= 90Hz)
. 2200 3200 3600
of an inverter AC

< 2000 < 3000
= S

T 1800 G 2800

1600 2600
20 20

T (°C) T (°C) T..(C) T_(°C) T.. (°C)

n out

(d) COP (N, = 30Hz) (e) COP (N =60Hz) (f) COP (N___ = 90Hz)

comp comp




Methodology --- online model predictive control

O Optimization problem formulation

= AC + building

min  YN¥_{ P, At - RTP, + p,e

Py,P3..Py—1
Tevi = Ay Ty + By - COP, - P, + E, - dy +w
Yie = CaTye + vy

Yibk — €k SV = Yupr t €k

e, =0

P, =0 or Py < Py < Prpsni

Uq, Uz, UN—1q

RFH + building

Xpyq = Adxk + Bduk + Eddk + Wy,
Vi = Caxyp + vy

Vibke — €k < Vi < Yubk T €k

ey 2 0

u, =0 or u,= Qheating,k

| AC+building in HK | RFH+building in DK

Prediction interval 5 mins
Prediction horizon 3 hrs

15 mins Why?
20 hrs



Test results

J A TRNSYS-MATLAB co-simulation testbed

Operating frequency Neomp Controller Measurement Tj,

« AC + building in HK O%

Integrated building energy system

( (

Inverter AC Cooling Building

I

I

I

I B H QAC B

: ‘n 999 é_I i
I I

N’

MATLAB TRNSYS
]
Operating signal i MPC Measurement T,
A . Controller ‘
 RFH + building in DK
MATLAB
[ Integrated building energy system
RFH system Building




Test results

e MPC for AC
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Test results

« MPC for RFH
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Conclusions

d Contributions:

e A simple-structured grey-box room thermal model is developed, linearized, discretized

and identified.

e MPC controllers for AC/RFH systems are designed and tested. Simulation results show
that MPC controllers for AC/RFH systems are able to respond to dynamic electricity
prices from smart grids. They help to reduce the peak power demands and electricity
costs in both Hong Kong and Denmark. Compared with the conventional rule-based

controllers, the MPC controllers are cost-efficient and grid-friendly.
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