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Outline 2(27)

Two goals

A general overview of basic steps in system identification

A more technical account of modeling goals for linear systems
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Modeling Approaches: View from the Mathworks 3(27)
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An Introductory Example: System 4(27)
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An Introductory Example 2: Model 5(27)
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u, y: measured time or frequency 
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An Introductory Example 3: Model Fitting 6(27)
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Data from the Gripen Aircraft 7(27)

0 20 40 60 80 100 120 140 160 180
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Pitch rate, Canard,
Elevator, Leading Edge Flap

How do the control surface angles affect the pitch rate?

Simulation of the aircraft
Design of autopilot (regulator)
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Aircraft Dynamics: From input 1 8(27)

y(t) pitch rate at time t. u1(t) canard angle at time t. T = 1/60.
Try

y(t) =
+b1u1(t− T) + b2u1(t− 2T) + b3u1(t− 3T) + b4u1(t− 4T)

0 20 40 60 80 100 120 140 160 180

Dashed line: Measured output (Pitch rate). Solid line: Model output,
simulated from the fourth order model from canard angle only.
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Using All Inputs 9(27)

u1 canard angle; u2 Elevator angle; u3 Leading edge flap;

y(t)= −a1y(t− T)− a2y(t− 2T)− a3y(t− 3T)− a4y(t− 4T)

+b1
1u1(t− T) + . . . + b4

1u1(t− 4T)

+b1
2u2(t− T) + . . . + b3

1u3(t− T) + . . . + b3
4u3(t− 4T)

0 20 40 60 80 100 120 140 160 180

Dashed line: Measured output (Pitch rate). Solid line: Model output,
simulated from the fourth order model with all three inputs
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System Identification: Issues 10(27)

Select a class of candidate models

Select a member in this class using the observed data

Evaluate the quality of the obtained model

Design the experiment so that the model will be “good”.
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System Identification: State-of-the-Art Setup 11(27)

A Typical Problem

Given Observed Input-Output Data: Find a Description of the System
that Generated the Data.

Basic Approach

Find a suitable Model Structure, Estimate its parameters, and com-
pute the response of the resulting model

Techniques

Estimate the parameters by ML techniques/PEM (prediction error
methods). Find the model structure by Cross Validation or other vali-
dation techniques
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The SI Flow 12(27)

M I
M(✓̂)

X
D

V

OK?
No, try new M Yes!

No, try newX

X : The Experiment
D: The Measured Data
M: The Model Set
I : The Identification Method
V : The Validation Procedure
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The SI Flow; Model StructuresM 13(27)
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Models: General Aspects 14(27)

A model is a mathematical expression that describes the
connections between measured inputs and outputs, and
possibly related noise sequences.

They can come in many different forms

Individual models in the structure are labeled with a parameter
vector θ

A common framework is to describe the model as a predictor of
the next output, based on observations of past input-output
data.
Observed input–output (u, y) data up to time t: Zt

Model described by predictor: M(θ) : ŷ(t|θ) = g(t, θ, Zt−1).
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The SI Flow: Estimation: I 15(27)
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A Pragmatic Fit Criterion 16(27)

If a model, ŷ(t|θ), essentially is a predictor of the next output, is is
natural to evaluate its quality by assessing how well it predicts: Form
the Prediction error and measure its size:

ε(t, θ) = y(t)− ŷ(t|θ), `(ε(t, θ))

Typically `(x) = x2. How has it performed historically?

VN(θ) =
N

∑
t=1

ε2(t, θ)

Which model in the structure performed best (Prediction Error
Method, PEM)?

θ̂N = arg min
θ∈DM

VN(θ)

(This is often also the Maximum Likelihood Estimate (MLE).)
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Model Estimate PropertiesM(θ̂N) 17(27)
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Model Estimate Properties 18(27)

As the number of data, N, tends to infinity

θ̂N → θ∗ ∼ arg minθ Eε2(t, θ)

M(θ∗) is the best possible predictor inM
E: Expectation.

This is very nice approximation property:

The model structure is not large enough: The ML/PEM estimate
converges to the best possible approximation of the system.

“Best possible approximation” ...

... under the conditions of the experiment

(If the model structure is large enough to contain a true
description of the system, then the ML/PEM estimated model
has (asymptotically) the best accuracy).
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Experiment Design: X 19(27)
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Experiment Design - Basic Principle 20(27)

X : The design variables: Input, Sampling Interval, Feedback,...
Then we just saw

θ̂N → θ∗(X )

The modelM(θ∗(X )) is the best approximation of the system
under X
Let the experimental conditions resemble those under which the
model is to be used!
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Model Validation:V 21(27)
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Model Validation Techniques 22(27)

“Twist and turn” the model(s) to check if they are good enough for the
intended application.

Essentially a subjective decision. Several basic techniques are
available:

1. Simulation (prediction) cross validation
• Check how well the estimated model can reproduce new,

validation data - Can compare different models in that way.

2. Residual Analysis
• Are the residuals ε(t, θ̂N) (the "leftovers") unpredictable? They

should not be correlated with anything we knew when estimating
the model. Check correlation of the residuals with old inputs.
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Rest Point 23(27)
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M(✓̂)

X
D

V

OK?
No, try new M Yes!

No, try newX

So this is the System Identification Flow or Loop

Several essential choices that have to be made, and often
revised.

Many of the choices have to be taken with the intended model
use in mind and thus have a subjective flavour.

Let us now turn to some specific illustrations for linear models
(Requires some more mathematical background.)
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More Technical Details: Linear Models 24(27)

y(t) = G(q, θ)u(t) + v(t); G(q, θ)u(t) =
∞

∑
k=1

gku(t− k),

v has spectrum Φv(ω) = λ|H(eiω, θ)|2
v(t) = H(q, θ)e(t) e(t) white noise

General Description of a Linear Model

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

The Prediction Errors

ε(t, θ) = H−1(q, θ)[y(t)−G(q, θ)u(t)]
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ε(t, θ) = H−1(q, θ)[y(t)−G(q, θ)u(t)]
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Asymptotic Properties for Linear Models 25(27)

Suppose the data is generated by a true linear system G0(q) and
that the prediction errors are pre-filtered by a filter L(q),

θ̂N = arg min ∑(L(q)ε(t, θ))2

Then

θ̂N → θ∗ = arg min
θ

∫ π

−π
|G(eiω, θ)−G0(eiω)|2Q(ω)dω

Q(ω) =
|L(eiω)|2Φu(ω)

|H(eiω, θ)|2

So the resulting model is closest to the true system in a norm defined
by Q.
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Identification for Simulation and Control 26(27)

Note that we can affect Q(ω) = |L(eiω)|2Φu(ω)
|H(eiω ,θ)|2 by choosing

L−−(I), the input spectrum Φu −−(X ) and the noise model
H−−(M), so it depends on all boxes in the identification chart.

Identification for simulation with an input u∗ ⇒ Make Q equal to
the spectrum of u∗
Identification for control⇒ Make Q large at the intended
cross-over frequency (≈ the intended bandwidth)
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Conclusions 27(27)

Identification is a work-flow loop with nodes that contain
essential user choices

These may (should) depend on the intended use of the final
model

Concrete illustration for linear system models

Lennart Ljung. CITIES Consortium Meeting, Aarhus, May 31, 2017

System Identification for Control and Simulation

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Conclusions 27(27)

Identification is a work-flow loop with nodes that contain
essential user choices

These may (should) depend on the intended use of the final
model

Concrete illustration for linear system models

Lennart Ljung. CITIES Consortium Meeting, Aarhus, May 31, 2017

System Identification for Control and Simulation

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Conclusions 27(27)

Identification is a work-flow loop with nodes that contain
essential user choices

These may (should) depend on the intended use of the final
model

Concrete illustration for linear system models

Lennart Ljung. CITIES Consortium Meeting, Aarhus, May 31, 2017

System Identification for Control and Simulation

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET


