Robust operation and planning of energy systems under uncertainty

Ioannis Konstantelos, Paola Falugi, Spyros Giannelos, Mingyang Sun, Goran Strbac

> Control and Power Research Group Imperial College London

EERA JP ESI – SP1 & SP2 Workshop Copenhagen, 2 Nov. 2016

Structure

- 1. Motivation
 - Types of uncertainty
 - Sources of planning uncertainties
- 2. Motivating examples
 - Transmission planning under uncertainty: the benefit of FACTS and storage
 - Distribution planning under uncertainty: the benefit of controllability
- 3. Computational Aspects
- 4. Summary/Discussion

Types of uncertainty

- Historically, power system planning has been carried out deterministically, against a certain scenario.
- However, due to the unbundling of the electricity industry and the rapid growth of renewable energy sources, planning now entails significant uncertainty.
- Long-Term Uncertainties (investment timescale)
 - Location, size and technology of new generation plants
 - Investment costs of novel technologies (e.g. storage)
 - Long-term demand growth due to electrification of transport and heat
 - Long-term price trends (e.g. coal, gas, CO2)
- **Short-term Uncertainties** (operational timescale)
 - Power injections from intermittent sources (e.g. wind, solar)
 - Demand patterns due to Electric Vehicles, heat pumps etc.
 - Equipment outages

Described via scenarios/ ranges

Data-driven statistical models

Planning uncertainties

Drivers for change in transmission planning:

- Multiple sources of long-term uncertainty
 - Generation deployment patterns; What? When? Where?
 - Electrification of heating and transport sectors
 - Technology costs
 - Other policy aspects e.g. CO2 emission targets etc.
- **New technologies** (e.g. energy storage, FACTS):
 - Increase system controllability and provide flexible balancing
 - Do not suffer from lengthy permissioning as conventional reinforcements
 - Can constitute attractive strategic investments for managing uncertainty
- Planning is no longer a straightforward cost-minimisation exercise.
- Planners have to optimise across multiple candidate assets while also considering uncertainties i.e. 'what-if' strategy vs. schedule

4

Case study at the transmission level

We show the fundamental difference in three approaches:

- D-I: Deterministic planning model where all asset types are allowed.
- S-I: Stochastic planning model where only investment in line reinforcements is allowed.
- S-II: Stochastic planning model where investment in all asset types is allowed.

IEEE-RTS case study II

Available assets for investment are shown below:

Asset Type	Reinforcement Capacity [MW]	Annualized Capital Cost [£/year]	Build Time	
Option A	200	1,500,000	1 epoch	
Option B	400	2,500,000	1 epoch	

Table I Transmission Line Reinforcement Options

Table II Alternative Investment Options

Asset Type	Annualized Capital Cost [£/year]	Build Time	
Phase-shifter	600,000	0 epochs	
Storage device	15,000,000	0 epochs	

QB maximum shift angle: 30° Storage Charge/Discharge rate: 400MW Storage Energy Capacity: 1600 MWh

Deterministic and Stochastic Results

Storage is sub-optimal										
under full know future		Investment Decisions		Costs (£m)						
		Epoch 1	Epoch2	Epoch 3	IC	OC	ТС	E{IC}	E{OC}	E{TC}
	S1	A (3-9), B (3-24), B (15-24)	PS (3-9), PS (11-14)	PS (15-16)	91.3	4957.4	5048.8			
Ī	S2	A (3-9), A (3-24), A (15-24)	PS (11-14)	-	52.9	5267.7	5320.6	44.9	5603.8	5648.7
D	S 3	-	A (3-9), A (3-24), A (15-24)	PS (9-12), PS (10-12), PS (11-13)	33.6	5834.9	5868.6	11.9	5005.0	5010.7
	S4			-	0.0	6295.1	6295.1			
	<u>\$1</u>	B (3-24)	A (1-3), A (3-9), A (14-16), B (15-16), B (15-24)	-	87.6	5078.7	5166.3			
I-S	82	В (3-24)	A (1-3), A (3-9), A (14-16), B (15-16), B (15-24)	-	87.6	5336.5	5424.1	57.4	5665.9	5723.3
	S3	B (3-24)	-	-	27.2	5897.1	5924.4			
	S4	B (3-24)	-	-	27.2	6295.1	6322.3			
	S1		A (3-9), B (3-24), B (15-24), PS (12-13), PS (16-19), STOR (24)	PS (3-9), PS (8-9), PS (16-17)	149.2	5009.9	5159.1			
S - II	S2	-	A (3-9), B (3-24), B (15-24), PS (12-13), PS (16-19), STOR (24)	PS (9-11), PS (10-12)	147.6	5253.7	5401.3	79.6	5626.1	5705.7
	S 3	-	A (3-24)	PS (9-11), PS (13-23)	12.9	5875.4	5888.3			
	S4	-	A (3-24)	-	9.5	6295.1	6304.6			

Conservative first-stage commitments to conventional reinforcements Ability to invest in storage defers long-term commitments to second stage (conditional on high-growth scenarios) Option Value of Flexible Assets

Distribution Network Case Study

- 11kV distribution network with 13 bus-bars arranged on four feeders.
- **Uncertain PV build-out** Potential voltage rise issues (limits ±0.06pu) 33/11kV **F-3** F-4 - 1 F-1 F-2 - 12 2 0.5MW ---- 13 3 1111 0.5MW . . . 14 I I | 1 MW 0.5MW 15 1.2MV 85M 11 1 1 1 1).85MV 1 1 1 1 1 1 1

10

11

Scenario Trees for Uncertainty Description

Uncertainty wrt future PV build-out:

Case Study - Investment Options

Three smart and one conventional investment options of different build time/cost are considered:

- **Demand Side Response (DSR)** allows the optimal intra-day shifting of flexible load (30% at each bus with 100% energy payback)
- **Coordinated Voltage Control (CVC)** measures actual voltage values at buses enabling the optimal regulation of the substation voltage.
- Soft Open Point (SOP) technology allows optimal control of active power flow and reactive compensation [135kW/135kVAr capacity @ 90% efficiency]

Technology	Build Time (epochs)	Annualized capital cost (£/yr)
DSR	0	3,200 (per bus)
CVC	0	24,000 (whole system)
SOP	0	29,000 (per NOP)
Reconductoring	1	17,060 (per line)

Case Study - Five typical days of operation

- For computational tractability, cost-benefit analysis is on the basis of repeated typical days.
- Five typical day profiles have been used to characterise the possible operating conditions (Elexon definition):
 - Winter
 - Spring
 - Summer
 - High summer (lo demand & hi PV)
 - Autumn
- Actual data from Low Carbon London trials

Mathematical Formulation I

$$\begin{aligned} z &= \min \left\{ \sum_{m \in \Omega_M} \pi_m \left(r_{\varepsilon_m}^I \omega_m^I + r_{\varepsilon_m}^0 \omega_m^0 \right) \right\} \end{aligned} \qquad (1) \end{aligned} \qquad \begin{array}{l} \text{Minimization of expected discounted operation and investment cost (social welfare maximisation)} \\ \omega_m^I &= \sum_{\substack{q \in \Omega_Q \\ t \in \Omega_T q}} N_q \delta_t c^c (P_{m,g}^{max} \zeta_{t,g} - P_{m,t,g}) + \sum_{\substack{q \in \Omega_Q \\ t \in \Omega_T q}} N_q \delta_t \xi^d_{m,t,n} \lambda \end{array} \\ (3) & \text{Operation cost per scenario node} \\ \omega_m^O &= \sum_{\substack{q \in \Omega_D G \\ p \in Q_{m,t,g}}} N_q \delta_t c^c (P_{m,g}^{max} \zeta_{t,g} - P_{m,t,g}) + \sum_{\substack{q \in \Omega_Q \\ t \in \Omega_T q}} N_q \delta_t \xi^d_{m,t,n} \lambda \end{aligned} \\ (3) & \text{Operation cost per scenario node} \\ (P_{m,t,g})^2 &+ (Q_{m,t,g})^2 \leq (S_{m,g}^{max} \zeta_{t,g})^2 \quad \forall m, t, g \; \Omega_{TH} \; U \; \Omega_{DG} \end{aligned} \\ \tilde{F}_{m,l} &= \sum_{\substack{q \in \Phi_{kL}(m) \\ \varphi \in \Phi_{kL}(m)}} B_{\varphi,l} F_{max} \qquad \forall m, l \ (6) \qquad \text{Line investment} \\ \tilde{C}_m &= \sum_{\substack{\varphi \in \Phi_{kL}(m) \\ \varphi \in \Phi_{kL}(m)}} B_{\varphi,l} &= V \; m, n \ (8) \quad DSR \text{ investment} \\ \tilde{S}_{m,c} &= \sum_{\substack{\varphi \in \Phi_{kS}(m) \\ \varphi \in \Phi_{kS}(m)}} S_{\varphi,c} \qquad \forall m, c \ (9) \quad SOP \text{ investment} \end{aligned} \end{aligned}$$

Mathematical Formulation II

$$P_{m,t,l}^{s} = (1 - \widetilde{B}_{m,l}) [V_{m,t,u_{l}}^{2} g_{l}^{A} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{A} \cdot \cos(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}}) - V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{A} \sin(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \\ + \widetilde{B}_{m,l} [V_{m,t,u_{l}}^{2} g_{l}^{N} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{N} \cos(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \\ - V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{N} \cdot \sin(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \qquad \forall m, t, l \ (10)$$

$$P_{m,t,l}^{r} = (1 - \widetilde{B}_{m,l}) [V_{m,t,v_{l}}^{2} g_{l}^{A} - V_{m,t,v_{l}} V_{m,t,u_{l}} g_{l}^{A} \cdot \cos(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}}) - V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{A} \sin(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}})] \\ + \widetilde{B}_{m,l} [V_{m,t,v_{l}}^{2} g_{l}^{N} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{N} \cos(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}})] \\ - V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{N} \cdot \sin(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}})] \qquad \forall m, t, l \ (11)$$

$$\begin{aligned} Q_{m,t,l}^{s} &= (1 - \widetilde{B}_{m,l}) [-V_{m,t,u_{l}}^{2} b_{l}^{A} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{A} \cdot \\ \sin(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}}) + V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{A} \cos(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \\ &+ \widetilde{B}_{m,l} [-V_{m,t,u_{l}}^{2} b_{l}^{N} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{N} \sin(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \\ &+ V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{N} \cos(\theta_{m,t,u_{l}} - \theta_{m,t,v_{l}})] \qquad \forall m, t, l \ (12) \end{aligned}$$

$$\begin{aligned} Q_{m,t,l}^{r} &= \left(1 - \widetilde{B}_{m,l}\right) \left[-V_{m,t,v_{l}}^{2} b_{l}^{A} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{A} \cdot \\ \sin\left(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}}\right) + V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{A} \cos\left(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}}\right) \right] \\ &+ \widetilde{B}_{m,l} \left[-V_{m,t,v_{l}}^{2} b_{l}^{N} - V_{m,t,u_{l}} V_{m,t,v_{l}} g_{l}^{N} \sin\left(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}}\right) \right] \\ &+ V_{m,t,u_{l}} V_{m,t,v_{l}} b_{l}^{N} \cos\left(\theta_{m,t,v_{l}} - \theta_{m,t,u_{l}}\right) \right] \qquad \forall m, t, l \quad (13) \end{aligned}$$

Active power flow (sending end)

Active power flow (receiving end)

Reactive power flow (sending end)

Reactive power flow (receiving end)

Mathematical Formulation III

$$\begin{split} \left(P_{m,t,l}^{s}\right)^{2} + \left(Q_{m,t,l}^{s}\right)^{2} &\leq \left[F_{l} + \tilde{F}_{m,l}\right]^{2} \\ \left(P_{m,t,l}^{r}\right)^{2} + \left(Q_{m,t,l}^{r}\right)^{2} &\leq \left[F_{l} + \tilde{F}_{m,l}\right]^{2} \\ V_{min} &\leq V_{m,t,n} &\leq V_{max} \\ V_{m,t,1} &= V_{m,t}^{cvc} + V_{m,t}^{noc} \\ V_{min}^{cvc} \cdot \tilde{C}_{m} &\leq V_{m,t}^{cvc} &\leq V_{max}^{cvc} \cdot \tilde{C}_{m} \\ V_{min}^{noc} &= V_{set_{m}} \cdot \left(1 - \tilde{C}_{m}\right) \\ \sum_{t \in \Omega_{Tq}} \left(\xi_{m,t,n}^{d} - \xi_{m,t,n}^{c}\right) &= 0 \\ \xi_{m,t,n}^{d} &\leq \widetilde{D}_{m,n} \cdot f_{t,n} \cdot d_{t,n} \\ \xi_{m,t,n}^{c} &\leq P_{c}^{max} \cdot \tilde{S}_{m,c} \\ H_{m,t,c} &\leq P_{c}^{max} \cdot \tilde{S}_{m,c} \\ H_{m,t,c,n}^{Q} &\mid \leq Q_{c}^{max} \cdot \tilde{S}_{m,c} \end{split}$$

$\forall m, t, l (14)$	Power limits
$\forall m, t, l (15)$	
$\forall m, t, n - \{1\}$ (16)	Voltage limits
∀ <i>m</i> , <i>t</i> (17)	Substation voltage
∀ <i>m</i> , <i>t</i> (18)	CVC voltage regulation
∀ <i>m</i> , <i>t</i> (19)	CVC voltage regulation
$\forall m, n, q$ (20)	DSR energy equation
$\forall m, t, n (21)$ $\forall m, t, n (22)$	Bounds on shift-able load
$\forall m, t, c$ (23)	SOP active power transfer limits
$\forall m, t, c (24)$	
$\forall m, t, c$ (25)	SOP reactive power bound

Mathematical Formulation III

$$\begin{split} &\sum_{g \in \Omega_{Dg} U \Omega_{TH}} P_{m,t,g} I_{n,g} - \sum_{l \in \{\Omega_L | v_l = n\}} P_{m,t,l}^r - \sum_{l \in \{\Omega_L | u_l = n\}} P_{m,t,l}^s = \\ &+ d_{t,n} + \xi_{m,t,n}^d - \xi_{m,t,n}^c + \sum_{c \in \{\Omega_C | n = n_c^a\}} (H_{m,t,c} - R_{m,t,c}\eta_f) & \text{Active power system balance equation} \\ &+ \sum_{c \in \{\Omega_C | n = n_c^b\}} (R_{m,t,c} - H_{m,t,c}\eta_f) & \forall m, t, n \ (26) \\ &\sum_{g \in \Omega_{Dg} U \Omega_{TH}} Q_{m,t,g} I_{n,g} - \sum_{l \in \{\Omega_L | v_l = n\}} Q_{m,t,l}^r - \sum_{l \in \{\Omega_L | u_l = n\}} Q_{m,t,l}^s = \\ &+ \Psi_{n,t} (d_{t,n} + \xi_{m,t,n}^d - \xi_{m,t,n}^c) \\ &+ \sum_{c \in \{\Omega_C | n = n_c^a \text{ or } n = n_c^b\}} H_{m,t,c,n}^Q & \forall m, t, n \ (27) \end{split}$$

Case Study - Optimal Deterministic Investment plans (D-I)

Exclusive reliance on network reinforcement (economies of scale) Smart options are completely ignored!

Case Study - Optimal Stochastic Investment strategy (S-I)

No possibility for smart asset investment

Case Study - Optimal Stochastic Investment strategy (S-II)

Ability to invest in smart technologies radically alters strategy: Deferral of all first-stage commitments!

Operation examples

Smart technologies offer increased controllability and resolve voltage constraints

Strategic Value of Smart Technology Options

Framework enables the computation of technology strategic value under different conditions -> explore technology complementarity and impact

Computational Challenges

Planning problems are becoming increasingly complex:

- Need to consider multiple long-term uncertainties → large scenario trees
- Multiple technology candidates → numerous binary variables
- Project of different **building times**; fast deployable storage/FACTS vs. large line requiring planning permission → many stages
- Non-sequential state equations due to building times

Strategic investment requires the solution of very large MILPs

Effective decomposition methods are essential

General Planning Problem Form

min{ Investment Cost + Operation Cost + Lost Load }

subject to

- Investment constraints (MILP)
- Operational constraints (LP)
 - Power Flow equations
 - Transmission constraints
 - Generation constraints
 - Pre-fault system energy balance equations
 - Post-fault system energy balance equations

Hierarchical Decomposition Scheme

- Concentrate all planning decisions in one problem
- Concentrate all operational decisions to a number of subproblems
- Iterate until the optimal solution is found (e.g. Benders decomposition)
- Through offline validation, identify offending post-fault operating points and add them as operating constraints

Temporal Decomposition Scheme

45X

24-bus IEEE RTS Case Study - Computational Performance

Nodes	No. of Iterations	CPU Time	Cost lower bound (£m)	Cost upper bound (£m)	Gap
Benders Decomposition					
15	12	55s	6436.3	6346.3	0%
31	15	5m 52s	6917.1	6917.1	0%
63	11	3d 19h 39m	7309.5	7328.5	0.26%
127	6	15d 14h 35m	7559.8	7642.9	1.08%
 255	7	21d 7h	7585.3	7674.4	1.17%
Nested Benders Decomposition					
15	13	1m 58s	6301.3	6348.8	0.74%
31	14	4m 28s	6840.8	6922.8	1.18%
63	16	10m 39s	7219.7	7316.9	1.32%
127	12	16m 13s	7449.2	7612.3	2.12%
 255	12	28m 28s	7464.9	7637.4	2.26%

Min-max regret planning

- An alternative decision criterion is the minimization of the maximum regret experienced across all considered scenarios
- This approach foregoes the use of probabilities and ensures that the worst case (NOT defined a priori) does not lead to exceedingly high costs

 <u>Example application to North Sea electricity network:</u> Studies have shown that flexible assets such as offshore-offshore connections could hedge against the high uncertainty that characterizes offshore wind deployment.

Summary/Discussion

- Evidence shows that flexible/smart technologies can play an important role in **managing interim uncertainty**:
 - They entail faster commissioning times
 - They enable an increase in controllability (pre and post fault) rendering them more immune to siting uncertainties
 - Many of these technologies are **relocatable**
- Industry and regulators are increasingly recognizing the need to manage uncertainty, but a **conceptual/methodological gap still persists**.
- We present a **methodological framework** for:
 - Identifying the optimal investment strategy under uncertainty which moves beyond scale economies and rewards operational flexibility
 - Computing the **option value** of different technologies under uncertainty
- These methods will **grow in importance** as the integration across energy vectors increases due to:
 - Electrification trajectory is still highly uncertain
 - It presents expanded opportunities for operational flexibility (EVs, heat pumps etc.)
- There is an active debate on stochastic vs. min-max decision criteria
- Extension to the multi-energy case requires the deployment of efficient **decomposition and linearization** techniques.

References

- [1] I. Konstantelos, S. Giannelos and G. Strbac, "Strategic Valuation of Smart Technology Options in Distribution Networks", *IEEE Transactions on Power Systems*, submitted Oct. 2015, in press.
- [2] I. Konstantelos and G. Strbac, "Valuation of Flexible Investment Options under Uncertainty", *IEEE Transactions on Power Systems*, vol. 30, no. 2, pp. 1047-1055, Mar. 2015.
- [3] P. Falugi, I. Konstantelos and G. Strbac, "Application of Novel Nested Decomposition Techniques to Long-term Planning Problems", *PSCC 2016*, Genoa.
- [4] A. Moreira, G. Strbac, R. Moreno, A. Street, I. Konstantelos, "A Five-Level MILP Model for Flexible Transmission Network Planning under Uncertainty: A Min-Max Regret Approach", under review, May 2016.

Thank you!

Questions?