

- **70 years** — 1950-2020

FLEXBUILD

Optimal utilisation of flexibility in buildings

Karen Byskov Lindberg (PhD), Marius Bagle and Igor Sartori (PhD) SINTEF Community 1

CITIES workshop, 12 Aug 2020, Copenhagen (virtual)

National load profile

SINTEF²

FLEXBUILD

The value of end-use flexibility in the future Norwegian energy system

Evaluate the role of *local flexibility* interacting with the power system and district heating system

- Project owner: SINTEF
- Duration: 4 years
- Budget: 16.6 mill kr

Industrial branch / Partners

Building owners Statsbygg, Omsorgsbygg, TOBB

District heating companies Norges Fjernvarmeforening

Grid companies Statnett, Elvia

Public actors NVE, Enova

Research institutes SINTEF, IFE, NTNU, SINTEF Energi

SINTEF

The models and their integration

- BUTLER: Building sector
- TIMES-Norway: Energy system
- EMPIRE: European power system
- EMPS/FanSi: Norwegian hydropower system

Utilise the strength of each model for better decision support 1st year: prepare modelling tools for integration

BUTLER

- BUTLER flexibility at building level
 - MILP model with hourly time resolution
 - Minimising total cost over 40 years

min $\left\{ \text{investment costs} + \sum_{yr} \text{discounted operational costs} \right\}$						
subject to:						
zero balance (CO_2 or primary energy)						
electricity balance						
heat balance						
technology constraints						

Reduce peak load

- Norwegian energy authorities
 - New incentives for reducing peak load
 - Energy labelling of buildings
 - Grid tariffs
- FlexBuild, 1st year
 - Investigating the impact of new grid tariffs on the peak load
 - Assuming all data-driven technologies are in place
 - All buildings are operated in a least-cost way

🕥 SINTEF

New grid tariffs analysed

• Subscription tariff

• Daily peak load tariff

month

		Fixed costs	Energy price	Peak price	
		EUR/year	cent/kWh	cent/kWh/hr	-
current	Energy tariff	118 EUR	4.6		Payment for hours
new	Subscription tariff	135 EUR + 67.5 EUR/kW	0.5	8	above subscription limit
new	Daily peak tariff	185 EUR	0.5	18 (w) 12 (s)	 One payment per day
current	Monthly peak tariff	404 EUR	0.69 (w) 0.39(s)	1490 (w) 790 (i) 230(s)	 One payment per

7

Single Family Home 250 m²

- SFH from the 70-80-ies
- Energy demand: 41 800 kWh/år
 - Heat: 31 200 kWh/yr
 - Electric spec.: 10 600 kWh/yr

■ Tappevann ■ El-spesifikt ■ Romvarme

• 3 use cases

regular ELECTR. RADIATOR

regular HEAT PUMP

efficient HEAT PUMP

Electricity load with energy tariff

Subscription tariff

SINTEF

Daily peak power

What happens on the coldest day?

Case 2: Regular - ASHP

• Subscription tariff

• Daily peak tariff

BUTLER: Results for region NO1

Categories:

- Single Family Home (SFH) + Apartment = Residential (RES)
- Commercial buildings (COMM)

<u>Technical standard:</u> We only consider regular buildings

Heat distribution system: waterborne and point source

Floor area [mill. m²]

Single Family Home	99.6
Apartment	22.9
RESIDENTIAL	122.6
COMMERCIAL	42.6

Aggregated heat demand in 2020

- Choice of technologies in BUTLER, when using spot prices from TIMES and "energy pricing" grid tariff
- 3 representative days in winter

Residential sector

Direct electric (panelovner) as peak technology

Electric Boiler as peak technology

Aggregated electricity load with different grid tariffs

FlexBuild – value of local flexibility for the system

Energy flexibility in buildings

- Large potential in Norway
- Heating system is essential: thermal electric flexibility
- Assess how the heat pump and heat storage influences the electric peak load

Peak load

- Occurs on the coldest day
- Power tariffs contributes
- RESIDENTIAL: daily peak tariff COMMERCIAL: current monthly peak tariff

----- **70 år** ------1950-2020

Teknologi for et bedre samfunn